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Abstract

Text-based games present a unique class
of sequential decision making problem in
which agents interact with a partially ob-
servable, simulated environment via actions
and observations conveyed through natural
language. Such observations typically in-
clude instructions that, in a reinforcement
learning (RL) setting, can directly or in-
directly guide a player towards complet-
ing reward-worthy tasks. In this work, we
study the ability of RL agents to follow
such instructions. We conduct experiments
that show that the performance of state-of-
the-art text-based game agents is largely
unaffected by the presence or absence of
such instructions, and that these agents are
typically unable to execute tasks to com-
pletion. To further study and address the
task of instruction following, we equip RL
agents with an internal structured represen-
tation of natural language instructions in
the form of Linear Temporal Logic (LTL),
a formal language that is increasingly used
for temporally extended reward specifica-
tion in RL. Our framework both supports
and highlights the benefit of understanding
the temporal semantics of instructions and
in measuring progress towards achievement
of such a temporally extended behaviour.
Experiments demonstrate the superior per-
formance of our approach.

1 Introduction

Building AI agents that can understand natural
language is an important and longstanding prob-
lem in AI. In recent years, instrumented text-based
game (TBG) engines have served as compelling
environments for studying a variety of tasks re-
lated to language understanding, affordance extrac-
tion, memory, and sequential decision making (e.g.,
(Côté et al., 2018; Adhikari et al., 2020; Liu et al.,
2022)). They provide a simulated, partially ob-
servable environment where an agent can navigate
and interact with environment objects, receiving

observations and administering commands via nat-
ural language. TextWorld (Côté et al., 2018) is a
text-based game learning environment for training
reinforcement learning (RL) agents. Successful play
requires language understanding, effective naviga-
tion, memory, and an ability to follow instructions
embedded within the text. Instructions may or may
not be directly bound to reward but can guide an
RL agent towards completing tasks and collecting
reward.

In this paper we study instruction following in
text-based games and propose an approach that
advances the previous state of the art. To this
end, we employ the state-of-the-art model-free TBG
RL agent called GATA (Graph Aided Transformer
Agent) (Adhikari et al., 2020) that operates in the
TextWorld environment. GATA has made signifi-
cant advances in performance by augmenting TBG
agents with long-term memory – a critical com-
ponent of effective game play. Despite GATA’s
improvement over previous baselines, our experi-
ments (see Figure 1) show that GATA performance
is largely unaffected by the presence or absence of
instructions, leading us to conclude that GATA is
not effectively following instructions. We also find
that while GATA agents are able to garner reward,
they are not typically successful in completing tasks
– an important vulnerability to the deployment of
such techniques in environments where partial com-
pletion of tasks can be unsafe.

To further study and address the task of instruc-
tion following, we equip GATA with an internal
structured representation of natural language in-
structions specified in Linear Temporal Logic (LTL)
(Pnueli, 1977), a formal language that is increas-
ingly used for temporally extended goals in planning
and reward specification in RL. LTL also provides a
mechanism to monitor progress towards completion
of instructions. Our framework both supports and
highlights the benefit of understanding the temporal
semantics of instructions and in measuring progress
towards achievement of a temporally extended be-
haviour. We perform experiments that illustrate
the superior performance of our TBG agent and its
ability to follow instructions. Contributions of this
work include:
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Figure 1: Comparison of GATA performance when trained with instructions (GATAD) versus when
instructions are stripped from environment observations (GATAD-S). Agents were trained with 20 or
100 games, at increasing levels of task difficulty (level 1 vs level 2). Note that normalized game point
performance (solid blocks) and rate of success (hashed blocks) are largely unchanged whether instructions
are present or absent. Low success rate (i.e., task completion) rate is also seen in level 2.

• Experiments that expose the lack of instruction
following and low task completion rate in a
state-of-the-art TBG agent.

• An approach to the study and deployment of
instruction following in TBG environments via
exploitation of a formal language: LTL. LTL
provides well-defined semantics and supports
a measure of progress towards satisfaction of
instructions.

• An augmentation to an existing state-of-the-
art architecture for TBGs to equip a TBG
agent with instruction-following capabilities.

• Comprehensive experiments and insights that
study our and others’ approaches to instruc-
tion following, and that highlight the superior
performance of our proposed approach.

2 Background

In this section we introduce TextWorld, the TBG
engine that we use, together with the Cooking do-
main that we employ in our experiments. We
also overview Linear Temporal Logic, which (as
described in section 1) we use in our approach as
an internal representation for instructions.

2.1 Text-Based Games: TextWorld

Text-based games are partially observable multi-
turn games where the environment and the player’s
action choices are represented textually. In this
work, we use TextWorld (Côté et al., 2018)
as our text-based game engine. A text-based
game can be viewed as a (discrete-time) par-
tially observable Markov decision process (POMDP)
⟨S, T,A,O,Ω, R, γ⟩ (Côté et al., 2018) where S is
the environment’s state space, A is the action space,
T (st+1|st, at) where st+1, st ∈ S and at ∈ A is the
conditional transition probability between states
st+1 and st given action at, O is the set of (partial)
observations that the agent receives, Ω(ot|st, at−1)

is the set of conditional observation probabilities,
R : S×A→ R is the reward function, and γ ∈ [0, 1]
is the discount factor. An agent’s goal is to learn
some optimal policy π∗(a|o) (or a policy that condi-
tions on historical observations or on some internal
memory) that maximizes the expected discounted
return. In this work, we focus on the choice-based
variant of games, similar to previous works (Ad-
hikari et al., 2020; Narasimhan et al., 2015). The
action space A is a list of possible commands and
at each time-step t in the game, the agent must
select action at ∈ Ct from the current subset of
permissible actions Ct ⊂ A.

2.1.1 Environment Setting

We focus on the TextWorld Cooking domain, popu-
larized by (Adhikari et al., 2020) and Microsoft’s
First TextWorld Problems: A Language and Rein-
forcement Learning Challenge (FTWP) (Trischler
et al., 2019). The game tasks agents with gathering
and preparing various cooking ingredients described
by an in-game recipe that is to be found. Game
points (rewards) are earned for each of (1) collecting
a required ingredient, (2) performing a preparatory
step (some cutting or cooking action) on an in-
gredient as required by the recipe, (3) preparing
the meal once all of the ingredients have been pre-
pared, and (4) eating the meal. The game’s partial
observations can contain instructions that guide
the agent towards completion of tasks, but not all
instructions correspond directly to rewards. The
game first instructs the agent to examine a cook-
book, which elicits a recipe to be followed. The
act of examining the cookbook returns no reward,
but following its recipe will return reward. See Ap-
pendix C for more details. Success is determined
by whether the recipe is fully completed and eaten.
Preparing ingredients can also involve collecting
certain tools (e.g., a knife). The game may also
involve navigation – the agent may need to navigate
to the kitchen or to find certain ingredients.



2.2 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) (Pnueli, 1977) is a for-
mal language – a propositional logical language with
temporal modalities – that can be used to describe
properties of trajectories. We will use LTL to spec-
ify instructions. LTL formulas are constructed from
propositional variables (e.g., player-has-carrot),
connectives from propositional logic (e.g. ¬), and
two temporal operators: ⃝ (NEXT) and U (UNTIL).
Formally, we define the syntax of LTL per (Baier
and Katoen, 2008) as

φ ::= p | ¬φ | φ ∧ ψ | ⃝ φ | φUψ

where p ∈ P for some finite set of propositional
symbols P. Satisfaction of an LTL formula is
determined by a sequence of truth assignments
σ = ⟨σ0, σ1, σ2, . . .⟩ for P, where p ∈ σi iff proposi-
tion p ∈ P holds at time step i. Formally, σ satisfies
φ at time i ≥ 0, denoted as ⟨σ, i⟩ |= φ, under the
following conditions:

• ⟨σ, i⟩ |= p iff p ∈ σi, where p ∈ P
• ⟨σ, i⟩ |= (φ ∧ ψ) iff ⟨σ, i⟩ |= φ and ⟨σ, i⟩ |= ψ
• ⟨σ, i⟩ |= ¬φ iff ⟨σ, i⟩ ̸|= φ
• ⟨σ, i⟩ |= φUψ iff there exists j such that

i ≤ j and ⟨σ, j⟩ |= ψ, and ⟨σ, k⟩ |= φ
for all k ∈ [i, j)

• ⟨σ, i⟩ |= ⃝φ iff ⟨σ, i+ 1⟩ |= φ
A sequence σ is then said to satisfy φ iff ⟨σ, 0⟩ |= φ.

Any LTL formula can be defined in terms of
p ∈ P, ¬ (negation), ∧ (and), ⃝ (NEXT), and U
(UNTIL). From these operators, we can also de-
fine the Boolean operators ∨ (or) and → (implica-
tion), and the temporal operators □ (ALWAYS) and
♢ (EVENTUALLY), where ⟨σ, 0⟩ |= □φ if φ always
holds in σ, and ⟨σ, 0⟩ |= ♢φ if φ holds at some
point in σ.

2.2.1 LTL Progression
LTL formulas can also be progressed along a se-
quence of truth assignments (Bacchus and Kabanza,
2000; Toro Icarte et al., 2018b) In other words, as
an agent acts in the environment, resulting truth
assignments can be used to update the formula
to reflect what has been satisfied. The updated
formula would now reflect the parts of the origi-
nal formula that are remaining to be satisfied or
whether the formula has been violated/satisfied.
The progression operator prog(σi, φ) is defined as:

Definition 2.1. For LTL formula φ, truth assign-
ment σi over P , and p ∈ P , prog(σi, φ) is defined as

• prog(σi, p) =

{
true if p ∈ σi

false otherwise
• prog(σi, φ1 ∧ φ2) = prog(σ1, φ1) ∧ prog(σ1, φ2)
• prog(σi,¬φ) = ¬prog(σi, φ)
• prog(σi, φ1 UNTILφ2) =

prog(σ1, φ2) ∨ (prog(σ1, φ1) ∧ φ1 UNTILφ2)
• prog(σi, NEXTφ) = φ

In the context of TextWorld, the progression
operator can be applied at every step in the
episode to update the LTL instruction fed to
the agent. To do so, it’s necessary to have
event detectors that can detect when propo-
sitions are true as the agent acts during an
episode (e.g., to detect that player-has-carrot
is true when the player has the carrot). We
discuss how event detection occurs in section 4.
To illustrate how progression works, the LTL
instruction (EVENTUALLY player-has-carrot) ∧
(EVENTUALLY player-has-apple) would be pro-
gressed to (EVENTUALLY player-has-apple) once
the agent grabs the carrot during an episode.
In other words, once the player executes the
grab carrot action, which results in a state where
player-has-carrot is true, the LTL instruction is
progressed to reflect that the agent no longer needs
to get the carrot but must still grab the apple at
some point.

3 Following Instructions in GATA

In order to evaluate the effectiveness of state-of-
the-art text-based game agents at following instruc-
tions, we conducted experiments on the Cooking
domain using the state-of-the-art model-free RL
agent for TextWorld, GATA (Adhikari et al., 2020).
GATA uses a transformer variant of the popular
LSTM-DQN (Narasimhan et al., 2015) combined
with a dynamic belief graph that is updated during
game-play. The aim is to use this belief graph as
long-term memory to improve action selection by
modelling the underlying game dynamics (Adhikari
et al., 2020). Formally, given the POMDP, GATA
attempts to learn some optimal policy π∗(a|o, g)
where g is the belief graph.

While GATA’s belief graph can capture goal rela-
tions (e.g. apple-needs-cut), it turns out that agents
trained to condition on observations and the GATA
belief graph alone largely ignore in-game instruc-
tions. We tested a GATA agent on levels 1 and 2
in the Cooking domain, after training on either the
20-game or 100-game training set, and found that in
none of those settings was the cookbook examined
more than 15% of the time (3/20 testing games).
In short, the GATA agent usually doesn’t observe
what the recipe is for the current game, meaning it
has no way of knowing what the actual goal of the
game is (except – eventually – from the rewards it
gets and when the episode ends).

We further investigate how GATA agents fail to
follow instructions by training these agents using
modified game observations that have their instruc-
tions stripped (specifically, instructions directing
the agent to examine the cookbook, the recipe text
within the cookbook, and instructions to grab a
knife if attempting to cut an ingredient without
first holding the knife were removed from obser-



vations). This has two effects: (1) the agent no
longer receives text-based instructions about what
the goal is or what it should do; and (2) GATA’s
belief state will no longer capture goal relations
like ‘needs’. The results of this experiment are
in Figure 1, and demonstrate how GATA’s perfor-
mance remains largely unchanged. This suggests
that GATA is (here at least) (a) not exploiting text-
based instructions that would lead it to success and
(b) even not exploiting the goal-related relations in
its own belief state.

The results in Figure 1 also show a drop in
GATA’s performance when moving from level 1
to level 2 in the Cooking domain, where the games’
complexity is increased by just one added ingredi-
ent preparation step in the recipes (see Table 1 for
more details on the levels). GATA has difficulty
in fully completing tasks on level 2 games, where
its success rate is roughly half that of its achieved
normalized game points (only the latter metric was
used by (Adhikari et al., 2020)).

Given these insights, we wish to further study and
address instruction following in TBGs. In the next
section, we propose using LTL and demonstrate
how existing work can be easily augmented.

4 An Approach to Following
Instructions

We now investigate a mechanism for both studying
and advancing the ability of an RL agent to follow
instructions. We do so by translating instructions
to an internal structured representation of language
in the form of LTL, a formal language that is in-
creasingly being used for reward specification in RL
agents (Vaezipoor et al., 2021; Leon et al., 2020;
Kuo et al., 2020; Camacho et al., 2019; Toro Icarte
et al., 2018b). We describe how to augment the
GATA architecture with these LTL instructions and
how to monitor progress towards their completion.

4.1 Generating and Representing LTL
Instructions for TextWorld

We use three types of instructions for the Cooking
domain. The first instruction identifies the need to
examine the cookbook: This instruction is defined
as φ : NEXT cookbook-is-examined. This instruc-
tion simply states that the agent should examine
the cookbook (i.e. cookbook-is-examined = true)
in the next step of the game. The second instruc-
tion is the actual recipe that gets elicited from the
cookbook. We format this instruction to be order-
invariant and incomplete. Order-invariance allows
the agent to complete the instructions in any or-
der, but is still constrained by any ordering that
the TextWorld engine may enforce. “Incomplete”
simply refers to the fact that not every single ac-
tion required to complete the recipe is encoded (i.e.
grabbing a knife before slicing a carrot, opening

the fridge). The agent must still learn to do these
things to accomplish its tasks, but is not directly
instructed to. Assuming the recipe requires that
predicates p1, p2, . . . pn be true, the cookbook in-
structions are modelled as φ : (EVENTUALLY p1) ∧
(EVENTUALLY p2) ∧ . . . (EVENTUALLY pn).

For example, in the Cooking Domain, this in-
struction might be the conjunction

φ :(EVENTUALLY apple-in-player)∧
(EVENTUALLY meal-in-player)∧
(EVENTUALLY meal-is-consumed).

The final type of instruction identifies the need to
navigate to the kitchen. This instruction is defined
as φ : EVENTUALLY player-at-kitchen. This in-
struction will come prior to the first two described
above, but is only used in games with navigation
(see Table 1).

We build a simple LTL translator that generates
these instructions from the textual observations,
similar to the goal generator used in (Liu et al.,
2022). TextWorld’s observations are easily parsed
to extract the goal information already contained
within them, which we then formalize and keep
track of using LTL. We provide examples of these
observations and more details in Appendix D. Note
that these observations are only used to generate
the instruction itself, and subsequently LTL pro-
gression is used with the GATA belief state as our
event detector to monitor completion of instruction
steps and to update instructions that remain to be
addressed.

4.2 LTL Augmented Rewards and Episode
Termination

We can also reward our agent for completing in-
structions, which we model as reward RΦ(s, a, φ).
For some labelling function L : S × A → 2P that
assigns truth values to the propositions in P,

RΦ(s, a, φ) =

R(s, a) +


1 if prog(L(s, a), φ) = true

−1 if prog(L(s, a), φ) = false

0 otherwise

In other words, a bonus reward is given for every
LTL instruction the agent satisfies and a penalty is
given if the agent fails to complete an instruction.
We perform an ablative study on the effect of this
reward in subsubsection G.4.2. We henceforth refer
to this modified reward function as the LTL reward.
The maximum bonus reward an agent receives is
either 2 if there is no navigation task, or 3.

Further, because we wish to satisfy instructions,
we can also use the instructions to modify episode
termination. That is, if our LTL instruction is
violated, we have arrived in a terminal state, even



if TextWorld has not indicated so. We perform
an ablative study on the effect of this LTL-based
termination in subsubsection G.4.2.

4.3 LTL-GATA Model Architecture

We build a similar model to GATA’s original archi-
tecture, augmented to include the LTL encoding
of instructions and their progression according to
observed system state. We dub this model LTL-
GATA, which we describe in detail below. Figure 2
depicts an episode step interaction of LTL-GATA
with TextWorld and Figure 3 depicts the model it-
self. Additional details can be found in Appendix E.

Graph Updater: We use the original GATA-
GTP model (Adhikari et al., 2020), which generates
a discrete belief graph as a list of triplets of the form
(object, relationship, object) . It is composed of two
sub-components: (a) the belief state updater, which
generates gt from observation ot and the graph
gt−1; and (b) the graph encoder, which encodes the
current graph into a vector as GE(gt) = g′t ∈ RD

for some latent dimension D. The graph encoder is
a relational graph convolutional network (R-GCN)
(Schlichtkrull et al., 2018) using basis regularization
(Schlichtkrull et al., 2018) and highway connections
(Srivastava et al., 2015). We refer the readers to
(Adhikari et al., 2020) for more details.

LTL Updater: The LTL updater generates and
progresses LTL instructions. LTL instructions defin-
ing the need to arrive at the kitchen and examine
the cookbook are generated from the initial ob-
servation o0. The subsequent instruction defining
the recipe is generated from game observation ot,
as described in subsection 4.1, when the action
examine cookbook is executed at time t. For the
truth assignments (i.e. the labelling function L),
we leverage GATA’s highly accurate belief state
from the graph updater. We use the Spot engine
(Duret-Lutz et al., 2016) to perform the progression.

Text Encoders: For encoding the action choices
Ct, observations ot, as well as encoding the LTL in-
structions φt, we use a simplified version of the
Transformer architecture presented in (Vaswani
et al., 2017). This is the same architecture used
in (Adhikari et al., 2020). For LTL instructions,
we encode them directly as a string. For ex-
ample, the LTL formula φ : (EVENTUALLY p1) ∧
(EVENTUALLY p2) where p1 = pepper-in-player
and p2 = pepper-is-cut, has the string repre-
sentation

str(φ) : “eventually player_has_pepper and
eventually pepper_is_cut“

We format each predicate as a single token, and
we show in subsubsection G.4.1 that our method is
robust to predicate format. For some input string
v ∈ Rℓ of length ℓ, the text encoder outputs a single

vector TE(v) = v′ ∈ RD of dimension D, which is
the same latent dimension as the graph encoder.

Action Selector: The action selector is a 2-
layer multi-layer perceptron (MLP). The encoded
state vectors TE(ot) = o′t ∈ RD, TE(φt) = φ′

t ∈ RD,
and GE(gt) = g′t ∈ RD are concatenated to form the
agent’s final state representation zt = [o′t;φ

′
t; g

′
t] ∈

R3D. In contrast to (Adhikari et al., 2020), we con-
catenate features rather than use the bi-directional
attention-based aggregator. This simplified the
model’s complexity and worked just as well exper-
imentally. This vector is then repeated nc times
and concatenated with the encoded actino choices
C ′

t ∈ Rnc×D where nc is the number of action
choices. This input matrix is fed to the MLP which
returns the a vector of Q-values for each action
qc ∈ Rnc .

Training. Formally, for belief state g and LTL
instruction φ, LTL-GATA aims to learn an optimal
policy π∗(a|o, g, φ). To learn this optimal policy,
we implement Double DQN (DDQN) (Van Hasselt
et al., 2016) with reward function and termination
criteria as discussed in subsection 4.2. We use a
prioritized experience replay buffer (Schaul et al.,
2016). Refer to subsection F.2 for further details.

5 Experiments
Our experimental assessment was designed both
to understand how well GATA was exploiting ob-
servational instructions, as discussed in section 3,
and to assess the instruction-following performance
of our proposed approach relative to this state of
the art (not only in terms of game points but also
successful completion). We additionally strove to
assess features of our approach (such as monitoring
instruction progress) that contributed to its perfor-
mance, as well as general challenges to text-based
game playing that limited its performance (such as
navigation).

5.1 Experimental Setup
Games. Consistent with (Adhikari et al., 2020), we
use the same set of games in the Cooking domain1,
which has distinct training, validation, and testing
sets. For the training games, there are two sets: one
set that contains 20 unique games and another that
contains 100 unique games. Both the validation
and testing sets are set at 20 unique games each.
The chosen levels are shown in Table 1.

Hyper-parameters. We replicate all but three
hyper-parameters from (Adhikari et al., 2020): (1)
we use a batch size of 200 instead of 64 when train-
ing on the 100 game set, (2) for level 3, we use
Boltzmann Action selection, and (3) we use Adam
(Kingma and Ba, 2015) with a learning rate of
0.0003 instead of RAdam (Liu et al., 2020) with

1https://aka.ms/twkg/rl.0.2.zip, accessed from
https://github.com/xingdi-eric-yuan/GATA-public.



Figure 2: An example of a single step in an episode of TextWorld. The game environment returns an
observation ot and action candidate set Ct in response to action at−1. In turn, the agent’s graph updater
(GATA) updates its belief graph gt in response to both ot and gt−1. Next, gt and ot update the LTL
instructions. φt is generated from ot after the cookbook is examined and thereafter φt−1 is progressed to
φt at each time step. The policy network selects action at from Ct conditioned on ot, φt, and gt and the
cycle repeats.

Figure 3: LTL-GATA’s policy model. The model chooses action
at ∈ Ct conditioned on the state zt = [o′t;φ

′
t; g

′
t]. The action

selector chooses at based on the predicted Q-values.

Table 1: Cooking Levels
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a learning rate of 0.001. These changes boosted
performance for all models. See subsection G.1 for
more details.

Baselines. We compare against (1) TDQN (Ad-
hikari et al., 2020), the transformer variant of the
LSTM-DQN (Narasimhan et al., 2015) model, (2)
GATAC, and (3) GATAD. GATAC is GATA’s best
performing model (GATA-COC) that uses a con-
tinue graph-updater pre-trained using contrastive
observation classification. GATAD is a similarly
performant model (GATA-GTP) that uses a dis-
crete graph-updater pre-trained with ground-truth
graphs from the FTWP dataset. Finally, we note
that we found a few issues with GATA’s original
code2 and have since fixed them (see subsubsec-
tion G.5.1). For comparison, we include the origi-
nal paper GATA models, labelled as GATAC

P and
GATAD

P .
Runs and measuring performance. Each

experiment is run using 3 seeds (123, 321, and 666).
We select the top-performing models (per seed) on
the validation set during training and apply those
models on the test set and report the average per-
formance scores, as well as error bars signifying the
standard deviation. We measure performance using
two metrics: normalized accumulated game points
and game success rate. We report averaged results
over 3 seeds for each experiment. Previous works
only compared using the normalized accumulated

2https://github.com/xingdi-eric-yuan/GATA-
public, released under the open-source MIT License.

game points, however this may sometimes be mis-
leading — an agent could get 3/4 = 0.75 points on
all games but never actually succeed on any. In
contrast, measuring the success rate alongside the
normalized game points allows for a more complete
analysis of the agent’s ability to play and complete
these games.

5.2 LTL-GATA Compared to Baselines

Consistently high performance with 20 train-
ing games. We see from Figure 4 that LTL-GATA
exhibits consistently high performance across levels
as compared to the baselines when trained on the
20 games set. In particular, LTL-GATA maintains
its performance on level 2, where the game’s slight
increase in complexity causes large performance
drop-offs in other methods. Our agent can eas-
ily complete the added task and maintain similar
performance to the previous level 1.

Large performance gains with 100 training
games. We see from Figure 4 that LTL-GATA
gains considerable performance when trained on
100 games. With the added games, our agent is
exposed to more predicates and can now generalize
better to the testing set. Future work may look at
how to achieve this kind of generalization without
having to expose our agent to more predicates.

Success rate and normalized game points.
Looking at the performance of GATA on level 2,
it becomes apparent why measuring the success is
important. Although it achieves almost 0.4 normal-
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Figure 4: Testing scores across various levels and on both the 20 (top) and 100 (bottom) game training
sets. We select the top-performing models (per seed) on the validation set during training and apply
those models on the test set and report the average scores, as well as error bars signifying the standard
deviation.
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(a) Forcing GATA to Examine the Cookbook
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(b) Progression Ablation

Figure 5: (a) A comparison of GATAD performance when given the Option to examine the cookbook vs.
when it is Required to examine the cookbook. (b) A comparison of LTL-GATA with (Prog) and without
(NoProg) using LTL progression.

ized points, the actual success rate is near 0 for
original GATA models, and ∼ 60% of the normal-
ized points for the fixed models average across both
training sets. In contrast, LTL-GATA exhibits high
normalized points and success rate, where the aver-
age success rate across both training sets is ∼ 82%
of the normalized points.

Competitive performance on level 3. Level 3
introduces the added challenge of navigation. LTL-
GATA outperforms GATA in this level as well, but
not to the degree of previous levels. Inspecting
testing trajectories it becomes evident that both
LTL-GATA and GATA methods struggle with nav-
igation in this level, and have difficulties even navi-
gating to the kitchen in the first place.

5.3 Does LTL Progression Matter?

We show in Figure 5b that the use of progression
is critical to performance, where LTL-GATA with-
out progression incurs a large performance drop-off,
dropping below the performance of the baselines
as well. Without progression, the LTL instruction

will not reflect the changes incurred by the agent’s
actions. This appears to confuse the agent consid-
erably, demonstrated by its performance drop-off.

5.4 Forcing GATA to Examine the
Cookbook

Because LTL-GATA is always tasked with exam-
ining the cookbook, we question whether a similar
tasking for GATA improves performance. We ex-
periment with GATAD by forcing the agent to ex-
amine the cookbook on the first step of the episode.
Forcing GATA to examine the cookbook will elicit
goal relations like (apple,needs,cut) in the belief
state. We show however in Figure 5a that GATA
does not improve when being given the cookbook.
This shows that GATA cannot make use of the in-
formation elicited from the cookbook, continuing to
ignore important instructions. Even with the pres-
ence of goal relations in its belief state, GATA fails
to properly attend to this information. This high-
lights the benefits of a formalized representation of
instructions used by LTL-GATA.



6 Related Work

Text-based games. In this work we equip a text-
based deep RL agent with formalized LTL instruc-
tions, building on previous works that employed be-
lief graphs for solving text-based games. (Adhikari
et al., 2020) focused on supervised (i.e. transla-
tion) and self-supervised learned mechanisms to con-
struct such belief graphs, whereas (Ammanabrolu
and Hausknecht, 2020; Yin and May, 2019b; Am-
manabrolu and Riedl, 2019) employed rule-based
methods. At a larger scope, there is a host of other
works on playing text-based games using deep rein-
forcement learning (Hausknecht et al., 2020; Zahavy
et al., 2018; Jain et al., 2020; Yin and May, 2019a).
(Yuan et al., 2018) used count-based memory to
shape the reward to improve in exploration and gen-
eralization in a simple domain. (Narasimhan et al.,
2015; He et al., 2016) proposed variations of an
LSTM-based model, which the TDQN model used
in this work is built from. In just published work,
(Liu et al., 2022) took a model-based approach, fo-
cusing on object-oriented dynamics. However, these
works do not address the role and representation of
instructions that defines our work. (Kimura et al.,
2021) does employ a neuro-symbolic RL method
using Logical Neural Networks. However, it does
not focus on instructions, operates over all logical
facts of the environment, and is applied to a simpler
domain.

Following LTL instructions. (Vaezipoor et al.,
2021) trained an RL agent to follow various LTL
instructions in both discrete and continuous action-
space visual environments. They used R-GCNs to
learn representations of the LTL instructions and
employed LTL progression. Their model showed
good generalization performance on similar and
much larger unseen instructions than those observed
during training . However, they relied on ground-
truth event detectors, while we use a learned event
detector (GATA) and opt for training the LTL se-
mantics end-to-end using a transformer rather than
an R-GCN. Works using LTL for reward specifica-
tion (Leon et al., 2020; Kuo et al., 2020; Camacho
et al., 2019; Toro Icarte et al., 2018b; Littman
et al., 2017) or advice (Toro Icarte et al., 2018a)
in RL agents exist, however they do not focus on
text-based environments, which are inherently par-
tially observable. Our work further differs in that
we model instructions dynamically on the environ-
ment’s observations and use a learned event detector
(GATA) rather than ground truth.

Following natural language instructions.
Following instructions conveyed via natural lan-
guage has been studied in a number of different
guises within AI (e.g., Mei et al., 2016; Artzi and
Zettlemoyer, 2013; Chen and Mooney, 2011; An-
derson et al., 2018; Tellex et al., 2011; MacMahon
et al., 2006). Compared to LTL, which offers struc-

tured syntax and formal semantics, the ambiguity
of natural language can make learning for instruc-
tion following more challenging. The merits of LTL
for conveying instructions has been recognized in
the past, resulting in several efforts to convert natu-
ral language into LTL for this and related purposes
(e.g., (Finucane et al., 2010; Chen, 2018; Patel et al.,
2020, 2019; Hahn et al., 2022)).

7 Conclusion

We studied the ability of RL agents to follow in-
structions in text-based games using TextWorld.
We conducted experiments to show how current
state-of-the-art model-free agents largely fail to ex-
ploit instructions and do not typically complete
prescribed tasks, and how LTL can be used to con-
struct internal structured representations for state
augmentation that result in large performance im-
provements and more reliable instruction following
and task completion. Experiments showed that
monitoring instruction progress was critical to these
gains. Our method inherits limitations in dealing
with navigation and unseen games from prior work,
but these concerns are somewhat orthogonal to our
focus on instruction following. These present im-
portant complementary directions for future work.
Finally, we consider the broader impact of this work
by relating to the critical need for good instruction
following in safety-oriented domains such as au-
tonomous transport or health care. Overall, we
intend this paper to highlight the importance of
studying instruction following in environments like
TextWorld that act as a proxies to the general class
of problems dealing with language understanding
and human-machine interaction.
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A Reinforcement Learning

Reinforcement Learning (RL) is the problem of
training machine learning models to solve sequen-
tial decision making problems. By interacting with
an environment, RL agents must learn optimal
behaviours given the current state of their environ-
ment. If the environment is fully observable, we can
frame it as a Markov Decision Process (MDP) mod-
elled as ⟨S,A, T,R, γ⟩ where S is the environment’s
state space, A is the action space, T (st+1|st, at)
where st+1, st ∈ S and at ∈ A is the conditional
transition probability between states st+1 and st
given action at, rt = R(s, a) : S × A → R is
the reward function for state action pair (s, a),
and γ ∈ [0, 1] is the discount factor. The goal
for an RL agent is to learn some optimal policy
π∗(a|s) that maximizes the expected discounted
return Eπ

[∑∞
k=0 γ

krt+k

∣∣St = s
]
. A single game is

an episode, and steps in an episode are indexed by
t.

B Partially Observed
Reinforcement Learning

In a partially observed environment, an agent does
not have access to the full state space S. We can

frame this environment as a Partially Observable
MDP (POMDP) modelled by ⟨S,A, T,O,Ω, R, γ⟩.
In this new setting, ⟨S,A, T,R, γ⟩ remain un-
changed, O represents the set of (partial) obser-
vations that the agent receives and Ω(ot|st, at−1) is
the set of conditional observation probabilities. An
agent’s goal is to learn some optimal policy π∗(a|o)
(or a policy that conditions on historical observa-
tions or on some internal memory) that maximizes
the expected discounted return.

C TextWorld: Cooking Domain

We present two examples of observations with in-
structions in Table 2 and highlight where the in-
structions are and where the rewards come from.

D Generating LTL in TextWorld

We provide some examples of the LTL instructions
used in this work in Table 3, Table 4, and Table 5.
We build a simple translator that reads game ob-
servations and constructs these LTL instructions
directly, but only once. Repeated observations will
not result in the same LTL formula being generated.
Once a formula has been generated, LTL progres-
sion is used with the agent’s belief state to progress
the instructions along the truth assignments: ob-
servations are not directly used in the progression,
although they do indirectly affect the progression
by affecting the belief state.

For levels 0, 1, and 2, the LTL instructions that
an agent can receive throughout an episode are
(a) the task to examine the cookbook and (b) the
recipe-bound task. In other words, the set of un-
progressed instructions Φ it can receive over the
course of an episode (assuming the cookbook is
examined) is as follows:

Φ : [ NEXT cookbook-is-examined,

(EVENTUALLY p1) ∧ (EVENTUALLY p2)∧
. . . (EVENTUALLY pn)]

where the recipe requires that predicates
p1, p2, . . . pn be true. Note that we also consider
eating the meal to be a part of recipe in this case,
although it is not explicitly mentioned in the recipe.
Further, we note that the ”prepare meal” task is
represented by the predicate meal-in-player, as
this is the event that occurs when the meal is
prepared in the game.

For levels with navigation (i.e. level 3),

Φ : [ EVENTUALLY player-at-kitchen,

NEXT cookbook-is-examined,

(EVENTUALLY p1) ∧ (EVENTUALLY p2)∧
. . . (EVENTUALLY pn)]



Table 2: TextWorld observations for the Cooking Domain game. We show the observations and highlight
where the instructions are, and finally identify what the rewards would be. This is for a level 2 game, and
the total possible reward is 5.

Initial Game Observation
“You are hungry! Let’s cook a delicious meal. Check the cookbook in the kitchen
for the recipe. Once done, enjoy your meal!” -= kitchen =- you find yourself
in a kitchen. You start to take note of what’s in the room. You can make out
a closed fridge nearby. You can see an oven. You can make out a table. You
wonder idly who left that here. You see a knife on the table. Something scurries
by right in the corner of your eye. Probably nothing. You see a counter. The
counter is vast. On the counter you see a raw red potato and a cookbook. You see
a stove, but the thing is empty, unfortunately.”

Reward
There is a reward of 1 given for eating the meal. i.e. the instruction “Once done, enjoy your
meal!” will result in a reward of 1 after the recipe has been completed. Note that the instruction
“Check the cookbook in the kitchen for the recipe.” is not bound to a reward.

Observation following the examine cookbook action
“You open the copy of “Cooking : a modern approach (3rd ed.)” and start reading:
recipe #1 ––––- Gather all following ingredients and follow the directions to
prepare this tasty meal. Ingredients: red potato: directions: chop the red
potato, fry the red potato, prepare meal”

Reward
There are 4 rewards from the instruction “Gather all following ingredients and follow
the directions to prepare this tasty meal. Ingredients: red potato: directions:
chop the red potato, fry the red potato, prepare meal”:

• 1 for grabbing the red potato

• 1 for chopping the red potato

• 1 for frying the red potato

• 1 for preparing the meal

where the agent has the added task of first navi-
gating to the kitchen. This instruction provides no
help for actually how to arrive at the kitchen, only
that the agent must do so. As a result, LTL-GATA
still suffers from the difficulties of exploration, and
perhaps investigating how LTL can be used to im-
prove in navigation could be a direction for future
work.

In total, LTL generation occurs only twice for any
level, either during the initial observation or when
the cookbook is read. When multiple instructions
are generated at once, the agent will process them
sequentially, in the order they are given.

E Model

E.1 Text Encoder

The text encoder is a simple transformer-based
model, with a transformer block (Vaswani et al.,
2017) and word embedding layer. We use the pre-
trained 300-dimensional fastText (Mikolov et al.,
2017) word embeddings, which are trained on Com-

mon Crawl (600B tokens). These word embeddings
are frozen during training. Strings are tokenized by
spaces.

The transformer block is composed of: (1) a
stack of 5 convolutional layers, (2) a single-head
self-attention layer, and (3) a 2-layer MLP with
ReLU non-linear activation function in between.
The convolutional layers each have 64 filters, with
kernel sizes of 5 and are each followed by a Layer
Norm (Ba et al., 2016). We also use standard
positional encoding (Vaswani et al., 2017). The self-
attention layer uses a hidden size H of 64. The Text
Encoder outputs a single feature vector v ∈ RD,
where D = 64 in our experiments.

E.2 Encoder Independence
Figure 3 in the main paper visualizes each compo-
nent of our model. Specifically, our model has four
encoders: (1) Graph Encoder, (2) Text Encoder
for observations, (3) Text Encoder for LTL instruc-
tions, and (4) Text Encoder for action choices.
We note here that each of these encoders are in-



Table 3: Level 3 observation and resulting generated LTL instruction

Observation
“You are hungry! Let’s cook a delicious meal. Check the cookbook in the kitchen
for the recipe. Once done, enjoy your meal!” -= corridor =- “You’ve entered a
corridor. There is a closed screen door leading west. You don’t like doors? Why
not try going north, that entranceway is not blocked by one. You need an exit
without a door? You should try going south.”

Generated LTL
This observation will generate two instructions: First,

φ : (EVENTUALLY player-at-kitchen)

and second,

φ : (NEXT cookbook-is-examined)

Table 4: Level 1 observation and resulting generated LTL instruction

Observation

“You open the copy of “Cooking : a modern approach (3rd ed.)” and start reading:
recipe #1 ––––- Gather all following ingredients and follow the directions to
prepare this tasty meal. Ingredients: red potato: directions: chop the red
potato, prepare meal”

Generated LTL

φ :(EVENTUALLY red-potato-in-player) ∧ (EVENTUALLY red-potato-is-chopped)∧
(EVENTUALLY meal-in-player) ∧ (EVENTUALLY meal-is-consumed).

dependent models, trained concurrently. This is
in contrast to the original GATA model that used
the same Text Encoder for both the actions and
the observations. Because these Text Encoders are
relatively small transformers, there is no issues with
fitting this model in memory. As shown in Table 6,
the model is still quite efficient, even more than
the original GATA code. We found that using in-
dependent encoders resulted in better performance
than using a single Text Encoder that would have
been responsible for encoding the observations, LTL
instructions, and action choices.

E.3 Action Selector

The action selector is a simple two-layer MLP with
a ReLU non-linear activation function in between.
It takes as input, at time step t, the concatenated
representation of the agent’s state vector zt ∈ R3D

and the action choices C ′
t ∈ Rnc×D. Recall that in

our experiments D = 64. The first layer uses an
input dimension of 4D and an output dimension of
D. The second layer has an input dimension of D

and output dimension of 1, which after squeezing
the last dimension during the forward pass, the
final output vector qc ∈ Rnc represents the q-values
for each action choice.

The input to the action selector is constructed
by repeating the agent’s state representation, zt,
nc times and then concatenating with the encoded
actions choices C ′

t. We wanted to further explain
why this occurs, as it may not be immediately clear.
The action selector in this work is a parameter-tied
Q-value predictor. That is, for some action ai ∈
Ct, i ∈ [1, . . . , nc] and agent state representation zt,
the predicted Q-value is qi = AS([ai, zt]). Thus, the
action selector (i.e. AS(·)) predicts Q-values given
action ai and agent state representation zt. Thus,
during a single episode step, given our encoded
actions choices C ′

t ∈ Rnc×D, in order for the action
selector to predict Q-values for each of these action
choices, we repeat zt ∈ R3D nc times and stack
it together, which results in a state matrix Zt ∈
Rnc×3D. When we concatenate this matrix with
our action choices we are left with the input to our



Table 5: Level 2 observation and resulting generated LTL instruction

Observation

“You open the copy of “Cooking : a modern approach (3rd ed.)” and start reading:
recipe #1 ––––- Gather all following ingredients and follow the directions to
prepare this tasty meal. Ingredients: red potato: directions: chop the red
potato, fry the red potato, prepare meal”

Generated LTL

φ :(EVENTUALLY red-potato-in-player) ∧ (EVENTUALLY red-potato-is-chopped)∧
(EVENTUALLY red-potato-is-fried) ∧ (EVENTUALLY meal-in-player)∧
(EVENTUALLY meal-is-consumed).

action selector: [C ′
t;Zt] ∈ Rnc×4D. Looking at this

matrix, each row in this input matrix is effectively
the concatenation of action ai with agent state
representation zt, and so passing this matrix to our
action selector performs the parameter-tied Q-value
prediction qi = AS([ai, zt]) for all action choices, and
outputs a single vector of Q-values for each action
qc ∈ Rnc . We can then use these predicted Q-values
to perform action selection using either a greedy
approach, an ϵ-greedy approach, Boltzmann action
selection, etc.

F Implementation Details

F.1 Augmenting GATA’s Pre-Training
Dataset

We note here that although possible, the vo-
cabulary and dataset used by (Adhikari et al.,
2020) did not allow for the knowledge triple
{cookbook, is, examined} to be extracted from ob-
servations. Without this triple being extracted
and added to the agent’s belief state, there would
be no way for the agent to progress LTL in-
structions requiring the agent to examine the
cookbook. In our pre-training of the GATA
graph encoder, we augmented the dataset provided
by (Adhikari et al., 2020) to include the triplet
{cookbook, is, examined} when relevant (i.e. when
the agent examines the cookbook). This was a
simple process of adding this triple to the ground
truth belief graphs in the dataset so that during
pre-training, GATA could learn how to translate
these triplets from relevant observations.

F.2 Training

For training to learn our optimal policy we use the
Double-DQN (DDQN) (Van Hasselt et al., 2016)
framework. We use ϵ-greedy for training, which first
starts with a warm-up period, using a completely
random policy (i.e. ϵ = 1.0) for the first 1, 000

episodes. We then anneal ϵ from 1.0 to 0.1 over
the next 3, 000 episodes after the initial warm-up
(i.e. episodes 1, 000 to 4, 000). We use a prioritized
experience replay buffer (α = 0.6 and β = 0.4) with
capacity 500, 000. For DDQN, the target network
updates occur every 500 episodes. We update net-
work parameters every 50 game steps, and we play
50 games in parallel.

We train all agents for 100, 000 episodes using a
discount factor of 0.9, and we use {123, 321, 666}
as our random seeds. Each episode during training
is limited to a maximum of 50 steps, and during
testing/validation this limit is increased to 100 steps.
We report results and save checkpoints every 1, 000
episodes. We also use a patience window p that
reloads from the previous best checkpoint during
training when validation performance has decreased
for p episodes in a row. This is the same strategy
used in (Adhikari et al., 2020). For our experiments,
we used p = 3.

For reporting testing results, each model is
trained using the three seeds mentioned before,
and fine-tuned on the validation set. That is, the
checkpoint of the model that performs best on the
validation set during training is saved, and each of
these models (three, one for each seed) is applied to
the test set. Reported test results are the average
over these three models.

G Experiments

G.1 Hyper-Parameters

To have as fair a comparison as possible, we repli-
cate all but three hyper-parameters from the set-
tings used in (Adhikari et al., 2020). We do this
to remove any bias towards more finely tuned ex-
perimental configurations and focus only on the
LTL integration. Further, we re-run the GATA
experiments to confirm their original results. The
three changes we implemented were (1) we use a



Table 6: Training times for each model and training set size. The times were reported using a workstation
with dual RTX3090s, an AMD Ryzen 5950x 16-core CPU, and 128GB of RAM. For the graph updater,
COC stands for the contrastive observation classification pre-training (the continuous belief graph model)
and GTP stands for ground-truth pre-training (the discrete belief graph model).

Model Training Set Size Batch Size Approximate Time

TDQN 20 64 16 hours
LTL-GATA 20 64 24 hours

GATAD 20 64 24 hours
GATAC 20 64 24 hours
GATAD

P 20 64 36 hours
GATAC

P 20 64 36 hours

TDQN 100 200 32 hours
LTL-GATA 100 200 48 hours
GATAD* 100 200 48 hours
GATAC 100 200 48 hours
GATAD

P 100 200 65 hours
GATAC

P 100 200 65 hours

Graph Updater using COC N/A 64 48 hours
Graph Updater using GTP N/A 64 48 hours

batch size of 200 instead of 64 when training on
the 100 game set, (2) for level 3, we use Boltzmann
Action selection, and (3) we use Adam (Kingma
and Ba, 2015) with a learning rate of 0.0003 instead
of RAdam (Liu et al., 2020) with a learning rate
of 0.001. These changes boosted performance for
all models. For the 20 training game set, we use a
batch size of 64.

For Boltzmann action selection, we used a tem-
perature of τ = 100. We experimented with vari-
ous temperatures (τ ∈ {1, 10, 25, 50, 100, 200}) and
found τ = 100 to perform the best across models.

G.2 Computational Requirements

We report the wall-clock times for our experiments
in Table 6.

G.3 Placeholder Header to Match Paper
References

This section header is included to match references
from the main paper, please ignore.

G.4 Additional Results

G.4.1 Ablation: Formatting LTL
Predicates

As we saw from Figure 4, LTL-GATA when trained
on the 100 games set performs significantly better
than when trained on the 20 game set, which we
attribute to the increased exposure to predicates
during training, allowing it to generalize better
during testing. To see if we can achieve the same
level of generalization when training on the 20 game
set, we compare LTL-GATA with LTL predicates
represented as single tokens (what we did in the

main paper) with using multiple tokens. That is, we
compare the following two string representations:

(single-token predicates) str(φ) :
“eventually player_has_pepper and
eventually pepper_is_cut”

(multi-token predicates) str(φ) :
“eventually player has pepper and
eventually pepper is cut”

The single-token predicates are mapped in the vo-
cabulary to a single word embedding. In our work,
we compute word embedding for these single-token
predicates by averaging the word embeddings of
each underscore-separated word in the predicate.
For example, the word embedding (WE) of the token
player_has_pepper is

WE(player_has_pepper) =

WE(player) + WE(has) + WE(pepper)
3

For multiple-token predicates, each word has its
own word embedding and we treat each word as
any other word in the sentence. The idea is that
by separating the tokens in the predicates, the text
encoder (transformer) may be able to attend to
each token independently, and during testing have
better generalization. We visualize the results of
this study in Figure 6. We can see from Figure 6
that this in fact does not help, and LTL-GATA
performs almost equally in either scenario. This
does however show how our method is robust to
predicate format.
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Figure 6: Study on LTL predicate format with single-token (Single) predicates and multi-token (Multi)
predicates. Performance is largely unchanged with predicate format. The numbers overlayed on the bars
indicate the numerical value of the normalized points achieved.
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Figure 7: Ablation studies on LTL-based episode termination and new reward function RΦ(s, a, φ) and on
LTL progression. (a) LTL-GATA with new reward function RΦ(s, a, φ) and without LTL-based episode
termination (LTL-GATA-X ). (b) LTL-GATA with base game reward function R(s, a) and with LTL-
based episode termination (LTL-GATA-B). (c) LTL-GATA with base game reward function R(s, a) and
without LTL-based episode termination (LTL-GATA-BX ). The numbers overlayed on the bars indicate
the numerical value of the normalized points achieved.

G.4.2 The Effect of LTL Reward and
LTL-Based Termination

It is important to study the effect that the addi-
tional LTL bonus reward and LTL-based episode
termination has on the performance of LTL-GATA.
To study this, we consider three scenarios: (a) LTL-
GATA with the new reward function RΦ(s, a, φ)
and without LTL-based episode termination; (b)
LTL-GATA with the base TextWorld reward func-
tion R(s, a) and LTL-based episode termination;
and (c) LTL-GATA with the normal TextWorld
reward function R(s, a) and without LTL-based
episode termination. For (a) and (b) we select level
1 on both the 20 and 100 game training set and
level 2 on the 20 game training set. For (c) we se-
lect level 2 on 20 training games. We visualize the
ablative study of these three scenarios in Figure 7.

From Figure 7 we can conclude that the pres-
ence of either the new reward function RΦ(s, a, φ)
or LTL-based episode termination is important to
the performance of LTL-GATA. This is because
either of these methods will incentivize the agent to
complete the initial NEXT cookbook-is-examined
instruction, which isn’t intrinsically rewarded by
TextWorld. We can demonstrate the importance
of this incentive by analyzing just one level (level
2 on 20 training games). Removing both methods
leads to the agent not examining the cookbook, pre-
venting it from receiving further instructions, which
we can see from Figure 7(c) results in considerable
performance loss, regressing to the baseline GATA.



G.5 Code
Statement of intent. Upon publication of this
work, we will release all code publicly on GitHub.

G.5.1 Fixing the GATA code
We found two primary issues in the GATA code.
First, we noticed that their implementation of the
double Q-learning error was wrong. For Double
Q-Learning, after performing some action at in
state st and observing the immediate reward rt and
resulting state st+1, the Q-Learning error is defined
per (Van Hasselt et al., 2016) as

Yt = rt + γQ(st+1, argmax
a

Q(st+1, a;θt);θ
′
t) (1)

where θt and θ′
t are the parameters of the policy

network and the target network, respectively. How-
ever, we noticed that the original code for GATA
was computing the error as 3

Yt = rt+rt+1 + γQ(st+1, argmax
a

Q(st+1, a;θt);θ
′
t)

In other words, the reward for the stepped state
was also being added to the error.

Second, we found that the double Q-learning
error for terminal states was being incorrectly im-
plemented. Specifically, when computing the er-
ror for the case where st is a terminal state, and
therefore the stepped state st+1 does not exist, the
stepped state was not being masked 4. Additionally,
presumably because of this initial error, terminal
states were very rarely returned when sampling
from experience, unless certain criteria were met 5.

We found fixing these issues improved GATA’s
performance considerably, which we demonstrated
in Figure 4, and all our experimental results for
GATA have this correction implemented.

G.6 Training Curves
We present accompanying training curves for exper-
iments reported in this work in Figure 8, Figure 9,
Figure 10, Figure 11, and Figure 12. We report aver-
aged curves of the normalized accumulated reward
with bands representing the standard deviation.

H Broader Impact
As (Adhikari et al., 2020) suggested, text-based
games can be a proxy for studying human-machine

3https://github.com/
xingdi-eric-yuan/GATA-public/blob/
c1afc3c9ab38256f839b3e0ddf8243796df5bd77/dqn_
memory_priortized_replay_buffer.py#L120-L123

4https://github.com/
xingdi-eric-yuan/GATA-public/blob/
c1afc3c9ab38256f839b3e0ddf8243796df5bd77/
agent.py#L1353-L1369

5https://github.com/
xingdi-eric-yuan/GATA-public/blob/
c1afc3c9ab38256f839b3e0ddf8243796df5bd77/dqn_
memory_priortized_replay_buffer.py#L93-L102

interaction through language. Human-machine in-
teraction and relevant systems have many potential
ethical, social, and safety concerns. Providing inac-
curate policies or information or partially complet-
ing tasks in critical systems can have devastating
consequences. For example, in health care, im-
proper treatment can be fatal, or in travel planning,
poor interactions can lose a client money.

Adhikari et al. (2020, section 7) identified sev-
eral research objectives relating to language-based
agents: improve the ability to make better decisions,
allow for constraining decisions for safety purposes,
and improve interpretability. We highlight how RL
agents equipped with LTL instructions can improve
in these areas. For constraining decisions, it may
be desirable to do so in way that depends on the
history, which LTL gives a way to keep track of.
With respect to interpretability, we propose that
monitoring the progression of instructions provides
a mechanism for understanding where and when
an agent might be making incorrect decisions, and
provides the opportunity to revise instructions or
attempt to fix the problem by other means.

Furthermore, we would like to suggest that works
towards building better language agents should also
emphasize the importance of completing instruc-
tions. To illustrate, for an agent to help a person
half-way across a street, or to start but not finish a
medical operation, may be worse than for it to do
nothing at all. To that end, we have proposed using
(game) success rate as a metric for future work, and
demonstrated how LTL-GATA is very successful in
the games it plays, relative to the state-of-the-art.

However, instruction following, especially overly
literal instruction following, may not always be ben-
eficial and can even be harmful. (Ammanabrolu
et al., 2022) describe a good example where an
agent in the Zork1 game breaks into a home and
steals the items it needs. In that specific case,
breaking into the home has no adverse effect on
the agent’s reward, and so it has no incentive not
to perform this act. Violation of social norms like
this are not modelled in our work, and can have
negative impacts, even in less extreme cases. Fur-
thermore, there are potential dangers of incorrect,
immoral, or even misinterpreted instructions that
lead to dangerous outcomes. Although we do not
directly address these concerns in this work, they
pose interesting directions for future work.
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Figure 8: Training curves of the normalized accumulated reward across various levels and on both the 20
(top) and 100 (bottom) game training sets. Bands represent the standard deviation. Note that on level
0, training curves for TDQN, GATAC, and GATAD were early stopped for achieving ≥ 0.95 normalized
accumulated reward on the validation set for 5 episodes in a row.
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Figure 9: Training curves (of normalized accumulated reward) for the study on LTL predicate format
with single-token (Single) and multi-token (Multi) predicates. Bands represent the standard deviation.
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Figure 10: Training curves (of normalized accumulated reward) for the comparison of GATA when
trained with instructions (GATAD) versus when instructions are stripped from environment observations
(GATAD-S). Agents were trained with 20 or 100 games, at increasing levels of task difficulty (level 1 vs
level 2). Bands represent the standard deviation.
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Figure 11: Training normalize reward curves for (a) comparison of GATAD when given the Option to
examine the cookbook vs. when it is Required to examine the cookbook and (b) comparison of LTL-GATA
with (Prog) and without (NoProg) using LTL progression. Bands represent the standard deviation.
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Figure 12: Training curves (of normalized accumulated reward) for the ablation studies on LTL-based
episode termination and new reward function RΦ(s, a, φ). (a) LTL-GATA with new reward function
RΦ(s, a, φ) and without LTL-based episode termination (LTL-GATA-X ). (b) LTL-GATA with base game
reward function R(s, a) and with LTL-based episode termination (LTL-GATA-B). (c) LTL-GATA with
base game reward function R(s, a) and without LTL-based episode termination (LTL-GATA-BX ). Bands
represent the standard deviation.
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