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Abstract
Agents change their beliefs about the plausibility of various
aspects of domain dynamics—effects of physical actions, re-
sults of sensing, and action preconditions—as a consequence
of their interactions with the world. In this paper we propose
a way to conveniently represent domain dynamics in the situ-
ation calculus to support such belief change. Furthermore, we
suggest patterns to follow when writing the axioms that de-
scribe the effects of actions, and prove how these patterns can
control the extent to which observations change the agent’s
beliefs about action effects. We also discuss the relation of
our work to the AGM postulates for belief revision. Finally,
we show how beliefs about domain dynamics can be incorpo-
rated into a form of regression rewriting to support reasoning.

1 Introduction
In this paper, we present a logical account of belief within
the situation calculus (Reiter 2001) in which we show how
an agent can change its beliefs about the dynamic properties
of actions—effects, preconditions, and sensing—as a conse-
quence of its interactions with the world. For example, the
agent may start with some belief about the general effects of
an action, but after performing the action and some related
sensing, come to realize that the action did not perform as
expected, and change its beliefs about the action’s effects.

To illustrate the change in beliefs that our account can
support, consider an example about picking up and holding
objects, where the agent changes its beliefs about how the
predicate H(x, s) (x is held in situation s) changes over time.
There’s an action p(x) (the agent tries to pick up x). At one
point the agent can believe

H(x, do(a, s)) ≡ a = p(x) ∨ H(x, s), (1)
(i.e., that it’s holding an object x if the last action a was
trying to pick x up or if it was previously holding x), and
then after sensing its failure to pick up a cup c, believe
H(x, do(a, s)) ≡ [a = p(x)∧¬(· · ·∧x = c)]∨H(x, s), (2)

where the ellipsis stands for an expression identifying when
the failure occurred. That is, the agent believes that while
it did fail to pick up the cup, that failure was a one-time
event. So the agent believes that it will be holding anything it
picks up except for that one-time failure. Furthermore, after
a second time failing to pick up the cup, the agent believes

H(x, do(a, s)) ≡ (a = p(x) ∧ x 6= c) ∨ H(x, s), (3)

i.e, that it can only pick up objects other than the cup. Fi-
nally, after trying to pick up another object also doesn’t re-
sult in it being held, the agent believes
H(x, do(a, s)) ≡ (a = p(x) ∧ ¬S(x, s)) ∨ H(x, s), (4)

i.e., that it can only pick up objects that are not slippery (S).
(It assumes the objects it couldn’t pick up were slippery.)
We will formalize this sequence of belief changes in §5.

We leverage our previous work (Klassen, McIlraith, and
Levesque 2018), which represents the beliefs of an agent as
being determined by what’s true in the most plausible ac-
cessible situations (as in (Shapiro et al. 2011)), and where
plausibility is measured by counting abnormalities. Beliefs
about domain dynamics were not addressed in that work.

Belief revision research following the AGM approach
(Alchourrón, Gärdenfors, and Makinson 1985) typically in-
volves revision by arbitrary sentences, but our work does
not require that. We are concerned with, instead of directly
telling an agent facts about how actions behave, having the
agent change its beliefs about dynamics in reaction to obser-
vations of the environment (as in our example about picking
up objects). It will be up to the axiomatizer to specify the
generality of the conclusions the agent should draw (e.g.,
whether observing a failed attempt to pick up a cup means
that that cup can never be picked up, or some broader or nar-
rower conclusion). Indeed, how to write such specifications
is a major focus of ours (with the downside that the axiom-
atizer must anticipate these less plausible scenarios). For
propositional languages, there has been some work about re-
vising beliefs about domain dynamics (e.g., (Herzig, Perrus-
sel, and Varzinczak 2006; Eiter et al. 2010; Varzinczak 2010;
Van Zee et al. 2015)), but they have not usually been con-
cerned with how to specify the generality of conclusions the
agent should draw (an exception may be (Eiter et al. 2007;
Eiter et al. 2010), which we discuss later).

After some background, in §3 we provide some results on
how beliefs about dynamics (effects, sensing, and precondi-
tions) can be determined. We then focus on action effects,
suggesting patterns to follow when writing the axioms de-
scribing them (§4), and in §5 use these patterns to formalize
our example from Equations 1–4. In §6, we provide a result
about how (potentially changed) beliefs about action effects
can be incorporated into regression (Reiter 2001, §4.5), a
rewriting technique that can simplify automated reasoning.
We discuss related work in §7 before concluding.



2 Preliminaries
2.1 Language and Notation
The situation calculus (McCarthy and Hayes 1969; Reiter
2001) is a language for describing actions and change, with
semantics given by (multi-sorted) second-order logic. The
sorts are situations, actions, and objects (for convenience,
we let the natural numbers be a subsort of objects). We use s
as a variable of type situation, a as a variable of type action,
x and y as variables of type object, and i and j as variables
of type natural number. Predicates are written with an up-
percase first letter (e.g., H), and function symbols (including
constants) with a lowercase first letter (e.g., sH). For a finite
set of formulas Γ, their conjunction can be written as

∧
Γ.

We may abbreviate a (possibly empty) sequence of terms
τ1, . . . , τk using vector notation as ~τ . A ground term does
not refer to any variables. We may omit leading universal
quantifiers when writing sentences. Also, we use ∀φ to de-
note the universal closure of a formula φ, i.e., the sentence
∀~x. φ, where ~x is the sequence of all free variables in φ.

In the situation calculus, properties that can change (e.g.,
whether an object is being held) are modelled using fluents,
predicates (or functions) whose last argument is a situation.
For example, H(x, s) could represent the property of the
agent holding x in situation s. We may informally express
H(x, s) by saying that H(x) is true in s.

Time is modelled as a branching structure: from a sit-
uation s, for any action a, do(a, s) is the future situation
that results from performing a in s. We use the abbreviation
do([a1, . . . , ak], s) for do(ak, (. . . , do(a1, s))). The nota-
tion s v s′ means that s′ is the situation resulting from
applying zero or more actions in s. The constant s0 de-
notes the actual initial situation—the root of the situation
tree. There may be other initial situations, that serve the
purpose of being epistemic alternatives for the agent. We
can use the abbreviation Init(s)

def
= ¬∃a, s′. s = do(a, s′)

to describe initial situations. We also find it convenient to
have the function root(s) (from (Shapiro 2005)) that returns
the initial situation preceding s (i.e., the root of s’s tree).

2.2 Action Theories
How the actions in any particular domain behave is typi-
cally described using some variation of Reiter’s basic action
theories (Reiter 2001). These include initial state axioms
that describe s0, successor state axioms (SSAs) that describe
how actions change the world, preconditions axioms that de-
scribe when actions are possible to execute, and (sometimes)
sensing axioms that describe how sensors work. Action the-
ories also have unique names axioms for actions.

There also are foundational axioms describing the do
function and v. Here, we assume the foundational axioms
also describe root(s) and assert that there exist initial situ-
ations where all fluents (not including the special symbols
Poss, SF or B, that we will introduce shortly) take all possi-
ble combinations of values.

To further describe action theories, we introduce uniform
formulas (Reiter 2001, Definition 4.4.1). Intuitively, a for-
mula ϕ is uniform in a situation term σ if ϕ describes only
the situation σ. That means, among other details, that ϕ does

not quantify over situations and that σ is the last argument
to any fluent appearing in ϕ. Uniform formulas also cannot
refer to the Poss, SF, or B predicates.

Initial state axioms are uniform in s0. An SSA for a fluent
F is a sentence of the form

F (~x, do(a, s)) ≡ φF (~x, a, s)

where φF is uniform in s (and all the free variables are im-
plicitly universally quantified). An SSA describes how the
value of F in a non-initial situation is determined by the ac-
tion that just happened and the last situation.

A precondition axiom is a sentence of the form

Poss(α(~x), s) ≡ φα(~x, s)

where α is an action function symbol (i.e., α(~x) is a term
of type action) and φα(~x, s) is uniform in s. Poss is a spe-
cial predicate meant to indicate that the action is possible to
execute. Similarly, a sensing axiom is a sentence of the form

SF(α(~x), s) ≡ φα(~x, s)

which is like a precondition axiom except for referring on
the LHS to the SF predicate. Intuitively, actions produce
binary sensing results, and the SF predicate indicates which
results are positive.

Much as traditional modal logics of beliefs determine be-
liefs using an accessibility relation over possible worlds,
in the situation calculus belief can be defined in terms of
an accessibility relation B(s′, s) over situations (Scherl and
Levesque 2003), saying that s′ is accessible from s.1 Simi-
larly to Scherl and Levesque, we require that B be described
by this SSA-like axiom:

B(s′′, do(a, s)) ≡
[
∃s′. B(s′, s) ∧ (s′′ = do(a, s′)) ∧

Poss(a, s′) ∧ (SF(a, s′) ≡ SF(a, s))
] (5)

That is, in any accessible situation the same actions that re-
ally occurred have been executed, they had to have been pos-
sible, and they produced the same sensing results.

As in some previous papers using the situation calculus,
we will make special use of the situation term “now”. We
will typically describe beliefs or knowledge of the agent
with formulas that refer to now, which intuitively will refer
to the situation that the agent thinks it’s currently in. Given
a formula φ referring to now, we will write φ[s] for the for-
mula that is like φ but substitutes s for now.

We can define a knowledge operator Knows(φ, s) (“φ
is known in s”) to describe what the agent is certain of:
Knows(φ, s)

def
= ∀s′. B(s′, s) ⊃ φ[s′]. Note that we are

not requiring “knowledge” to be true in reality, just in all
accessible situations.

However, we are more interested in belief, which we will
follow Shapiro et al. (2011) in defining as what’s true, not
in all accessible situations, but in all the most plausible ac-
cessible situations. As in our previous work (Klassen, McIl-
raith, and Levesque 2018), we define one situation as being
more plausible than another if the sum of the cardinalities of

1Note that the order of arguments to B is the opposite of the
convention in modal logics.



the extensions of certain fluents, called abnormality fluents,
is smaller. We use the notation s′ ≤pl s

′′ to abbreviate a
(second-order) formula saying that s′ is at least as plausible
as s′′. A belief operator Bel(φ, s) (“φ is believed in s”) can
be defined as an abbreviation for

∀s′. [B(s′, s) ∧ ∀s′′. B(s′′, s) ⊃ s′ ≤pl s
′′] ⊃ φ[s′].

We can think of the agent as using a form of cardinality-
based circumscription (Liberatore and Schaerf 1997;
Sharma and Colomb 1997), a variant of the subset-based
minimization originally used in circumscription (McCarthy
1980), in determining its beliefs. In those terms, abnormali-
ties are minimized (w.r.t. cardinality) while all other fluents
are allowed to vary.2 (Note that beliefs can be retracted by
shrinking the B relation, unlike with knowledge.)

We will follow the assumption made over most of
(Klassen, McIlraith, and Levesque 2018) that abnormality
fluents don’t change their value over time; i.e., for any ab-
normality fluent Abi, it has this SSA:

Abi(~xi, do(a, s)) ≡ Abi(~xi, s). (6)

We will see that that constraint is not a great limitation, as
we can represent implausible events as being predetermined
by the initial situation. Note that abnormalities need a situa-
tion argument, despite not changing, so that we can associate
different plausibility levels with different initial situations.

We will find it convenient to have abnormalities with asso-
ciated numeric weights that determine how much they con-
tribute to the implausibility of a situation. We could do so
without changing the formalism by introducing the short-
hand Abki (~x, s)

def
=
∧k
j=1 Abi(j, ~x, s). Intuitively, Abki be-

haves as an abnormality fluent with weight k should; for it
to be true is counted as k abnormalities.

To wrap things up, here’s a formal definition of the action
theories we’ll use, which are essentially the same as those
we considered in (Klassen, McIlraith, and Levesque 2018)
and so which we give the same name.
Definition 1 (IAAT). An immutable abnormality action the-
ory (IAAT) is a set of axioms

Σfound ∪ Σssa ∪ Σpre ∪ Σsense ∪ Σ0 ∪ Σuna ∪{
∀s. B(s, s0) ≡

(
Init(s) ∧

∧
φ∈ΣKB

φ[s]
)}

where Σfound is the set of foundational axioms (as we previ-
ously described), Σssa is the set of successor state axioms
(including Equation 5 for B, and axioms for each abnor-
mality fluent in the form of Equation 6), Σpre is the set of
precondition axioms, Σsense is a set of sensing axioms, Σ0 is
the set of initial state axioms, Σuna is the set of unique names
axioms for actions, and ΣKB is a set of axioms (uniform in
now) describing what the agent initially believes.

For later use, we will require that the language of an
IAAT includes a functional fluent, history(s), which we will
use to store a representation of the sequence of actions that
have occurred. To define the history fluent, we assume Σ0

2The reason for using a cardinality-based approach was techni-
cal; see (Klassen, McIlraith, and Levesque 2018, section 5.2).

contains an axiomatization of lists, specifying how concate-
nation works, and that · is a function symbol for concate-
nation. We require that Σssa contain the following SSA:
history(do(a, s)) = history(s) · a. ΣKB should contain
history(now) = 〈〉, where 〈〉 denotes the empty list.

Observe that an IAAT constrains the initially accessible
situations to be those initial situations where ΣKB is true.
We will find it useful to have a symbol to denote the part of
an IAAT that describes the domain dynamics:

Σdyn
def
= Σssa ∪ Σpre ∪ Σsense

3 Beliefs about Domain Dynamics
We will be exploring beliefs entailed by our action theories
(IAATs) about SSAs, preconditions, and sensing axioms,
and how to determine them. Later (§4) we suggest having
the descriptions of domain dynamics in the theory refer to
abnormalities, so as to describe less plausible ways that the
domain might behave. The techniques of this section can
then allow us, in some cases, to find beliefs about dynamics
that don’t refer to abnormalities.

To start, note that given any IAAT Σ, the agent will al-
ways believe the SSAs, precondition axioms, and sensing
axioms written in it, since they hold at all situations. How-
ever, we are more interested in what the agent believes about
the domain’s dynamics in the situation tree it’s on, i.e., in sit-
uations following from root(now). Therefore, we define the
notion of an axiom that holds on a (sub)tree, rooted at σ.3

Definition 2 (relativized axiom). Let φ(s) be such that
∀s. φ(s) is an SSA, precondition axiom, or sensing axiom.
Then the corresponding axiom relativized to σ, where σ is a
situation term, is the formula ∀s. (σ v s) ⊃ φ(s).

Henceforth, when we informally talk about the agent be-
lieving an axiom about dynamics, we really mean that it be-
lieves the corresponding axiom relativized to root(now).
Definition 3 (Γ:σ). Let Γ be a set of axioms about dynamics.
Given a situation term σ, Γ relativized to σ, written Γ:σ, is
the set of corresponding axioms relativized to σ.

In terms of axioms relativized to root(now), the agent will
still believe the axioms in Σdyn, i.e., we will always have
that Σ |= ∀s. Bel (

∧
Σdyn:root(now), s). However, as the

agent changes its beliefs about the abnormality fluents, it
may come to believe that various other axioms are equivalent
to the original ones (and so also believe them). For example,
if Σ includes the SSA

H(x, do(a, s)) ≡ (a = p(x) ∧ ¬Ab1(s)) ∨ H(x, s) (7)

and the agent comes to believe that Ab1 is true on the sit-
uation tree it’s on, then the agent will as a result believe a
simpler (relativized) SSA saying that H does not change:

H(x, do(a, s)) ≡ (a = p(x) ∧ ¬True) ∨ H(x, s)

That simplifies to H(x, do(a, s)) ≡ H(x, s).
The following definition will be useful in describing what

the agent believes about abnormalities.
3Such axioms have sometimes been used in action theories with

multiple initial situations (Lakemeyer and Levesque 1998).



Definition 4 (Ab account). Suppose we have a language
with n abnormality fluents, Ab1, . . . ,Abn, of possibly dif-
fering arities. An Ab account ξ is an expression

ξ(now)
def
=
∧

Abi∈R ∀~x. Abi(~x, now) ≡ ξi(~x),

where R ⊆ {Ab1, . . . ,Abn}, containing a conjunct corre-
sponding to each Abi fluent in R. If Abi is an (m + 1)-
ary fluent (where the last of those arguments is the situation)
then the expression ξi is of the form

(∨`
k=1

∧m
j=1 xj = τjk

)
for some ` ≥ 0, where the τjk are ground terms that do not
refer to any situation term. We call R the range of ξ.

Intuitively, an Ab account ξ characterizes the extension of
each abnormality fluent in its range. Note that if Abi is a
unary fluent (taking only a situation argument), the expres-
sion ξi in an Ab account ξ is either True or False. Also, any
Ab account requires that there be only finitely many abnor-
malities, so there can be situations in which no Ab account
is true.

Ab accounts are not normally included in action theories,
but are things that may be believed or disbelieved by the
agent. For example, suppose we’re working with a theory in-
cluding the SSA from Equation 7. If the agent observes that
p(x) fails to make H true of x, then the agent may come to
believe the Ab account (Ab1(now) ≡ True). Recall that ab-
normalities do not change over time, so if Ab1 is true “now”,
it was always and will always be true. So, as the next lemma
notes, if an agent believes an Ab account holds now, then it
believes that account has held and will hold forever.
Lemma 1. For any IAAT Σ, Ab account ξ, and ground ac-
tion sequence ~α,

Σ |= Bel(ξ(now) ⊃ ∀s w root(now). ξ(s), do(~α, s0))

Proof. This follows from abnormalities not changing and
the terms in ξ(s) not depending on s.

The main role to which we put abnormalities is as markers
of subjective plausibility. We are typically more interested
in the non-abnormality fluents, and what the agent believes
about them, i.e., in beliefs about normal formulas.
Definition 5 (normal formula). A formula is normal if it
doesn’t refer to any abnormality fluents.
Definition 6 (normalization). Given a formula φ and an Ab
account ξ, the normalization of φ w.r.t. ξ is a formula φ′
which is like φ but, for each Abi in the range of ξ, replaces
each occurrence of any subformula of the form Abi(~τ , σ)
(where σ is a situation term and ~τ are other terms) with
ξi(~τ).

For example, if φ is the SSA from Equation 7,

H(x, do(a, s)) ≡ (a = p(x) ∧ ¬Ab1(x, s)) ∨ H(x, s),

and ξ is the Ab account Ab1(x, now) ≡ (x = c ∨ x = d),
then the normalization of φ with respect to ξ is

H(x, do(a, s)) ≡ (a = p(x) ∧ ¬(x = c ∨ x = d)) ∨ H(x, s).

Note that normalization is defined for any formula φ, and
if an Ab account ξ includes in its range every abnormality

fluent mentioned by φ then the result of normalizing φ w.r.t.
ξ will be a normal formula.

We will see that in some cases the agent will believe the
normalizations of certain sentences it believes.

Proposition 1. Let Σ be an IAAT. Let ∀s. φ(s) be an SSA,
precondition axiom, or sensing axiom in Σ. Let ~α be a se-
quence of ground actions. If there is an Ab account ξ such
that Σ |= Bel(ξ, do(~α, s0)) and φ′ is the normalization of φ
with respect to ξ, then

Σ |= Bel(∀s w root(now). φ′(s), do(~α, s0)).

Proof. Suppose that there is an Ab account ξ such that
Σ |= Bel(ξ, do(~α, s0)) and φ′ is the normalization of φ with
respect to ξ. By Lemma 1 we have that

Σ |= Bel(∀s w root(now). ξ(s), do(~α, s0)),

and it’s easy to see that Σ entails

Bel(∀s w root(now). ξ(s) ⊃ [φ′(s) ≡ φ(s)], do(~α, s0)).

Therefore, since the agent believes ∀s w root(now). φ(s) in
do(~α, s0), we get the result.

Proposition 1 can be applied to show, given particular ac-
tion theories, that after certain actions the agent believes
simpler dynamics axioms than those that were written in its
initial knowledge base (we will put it to use in later sections).

A generalization we can make to Proposition 1 is to con-
sider cases where the agent believes a disjunction of Ab ac-
counts (but not necessarily any of the disjuncts). To illustrate
why that is useful, consider a scenario where an agent unex-
pectedly fails to pick up an object and doesn’t know if that
failure was because the object was red or because the object
was fuzzy. Then we might want the agent to believe the dis-
junction of “I can pick up any non-red object” and “I can
pick up any non-fuzzy object”. For cases like this, the more
general Proposition 2 below is relevant.

Proposition 2. Let Σ be an IAAT. Let ∀s. φ(s) be an
SSA, precondition axiom, or sensing axiom in Σ. Let ~α
be a sequence of ground actions. If there are Ab accounts
ξ1, . . . , ξk such that Σ |= Bel

(∨k
i=1 ξ

i, do(~α, s0)
)

and φ′i
is the normalization of φ with respect to ξi for each i, then

Σ |= Bel
(∨k

i=1 ∀s w root(now). φ′i(s), do(~α, s0)
)
.

Proof. Similarly to in the proof of Proposition 1, it’s easy to
see that for each i, Σ entails

Bel(∀s w root(now). ξi(s) ⊃ [φ′i(s) ≡ φ(s)], do(~α, s0)).

Therefore, since the agent believes ∀s w root(now). φ(s) in
do(~α, s0), we can get the result (using Lemma 1).

4 Patterns for SSAs
In this section we consider how the axiomatizer should write
SSAs, so that the agent will change its beliefs by the desired
amount given new evidence. We suggest patterns to follow,



based on a traditional way of writing SSAs in terms of pos-
itive and negative effects. Following Reiter (2001, §3.2.7),
an SSA for a unary fluent F would be written in the form

F (x, do(a, s)) ≡
γ+(x, a, s) ∨

(
¬γ−(x, a, s) ∧ F (x, a, s)

) (8)

where the formula γ+ describes positive effects on F , i.e.,
conditions under which F becomes true, and the formula γ−
describes negative effects on F , i.e., conditions under which
F becomes false.
Definition 7 (revisable SSA). We will say that an SSA is a
revisable SSA if it is written in the form

F (x, do(a, s)) ≡
(
γ+(x, a, s) ∧ ¬

∨
i εi(x, a, s)

)
∨(

¬γ−(x, a, s) ∧ F (x, a, s)
)

where γ+ and γ− are normal formulas.
Intuitively, each εi in a revisable SSA describes a less

plausible case in which action a fails to make F (x) true.
The structure of a revisable SSA could easily be rearranged
to instead describe less plausible cases in which F may fail
to become false, may become true, or may become false. For
reasons of space we’ll just consider Definition 7.

What might we want the εi formulas to look like? We
suggest three forms, for dealing with exceptional objects,
exceptional classes, and one-time exceptions.

Exceptional objects We may want an agent to conclude
from an unexpected observation involving a particular object
that actions always affect that object differently. To achieve
this, we could make εi(x, a, s) take the form Abj(x, s). In-
tuitively, if the agent comes to believe that Abj(c, now) is
true of a particular object c (e.g., by observing that F does
not become true of c when expected), then the agent will
conclude that all actions will fail to make F true of c. Note
that it’s not necessary for the action theory to say anything
else about Abj for this to work (other than Abj’s own SSA,
specifying that it doesn’t change).

Exceptional classes Another sort of generalization that
we might want the agent to make on observing an unex-
pected (non-)effect is that that unexpected behavior will al-
ways occur when dealing with objects from a particular
class. For example, an agent might conclude from failing
to pick up an object that some objects are too slippery to be
picked up. To achieve this, we could make εi(x, a, s) take
the form [P (x, s) ∧ Abj(s)] where P is a fluent. Note that
Abi(s) does not take x as an argument, so it being true would
mean that any objects on the situation tree which s is part of
behave abnormally when they have property P .

One-time exceptions We may want an agent to, when ob-
serving an unexpected (non-)effect of an action a in situa-
tion s, just accept that a had that (non-)effect in s, while not
changing its beliefs about how any action will behave in any
other situation. This can be viewed as a sort of minimal way
of adjusting the agent’s beliefs to keep them consistent. We

will call such isolated unexpected (non-)effects “one-time
exceptions”. We could model this by making εi(x, a, s) take
the form Abj(history(s), x, a, s). Since the abnormality de-
pends on the sequence of actions history(s) (from Defini-
tion 1), each new unexpected action outcome would require
another abnormal atom to be true.

We call a revisable SSA that uses only these three patterns
a simple SSA:
Definition 8 (simple SSA). A revisable SSA is a simple
SSA if each εi(x, a, s) is in one of the following forms (the
abnormalities may have associated weights):

1. Abj(x, s) (for exceptional objects),
2. [P (x, s) ∧ Abj(s)] (for an exceptional class),
3. or Abj(history(s), x, a, s) (for one-time exceptions).

We want to show that simple SSAs behave as desired. To
facilitate exposition we introduce the next abbreviation.
Definition 9 (~α  φ). Suppose ~α is a sequence of action
terms and φ is a formula. Then we define

~α φ
def
= Bel

(
∀(root(now) v s ⊃ φ), do(~α, s0)

)
In the case where the length of ~α is 0, we write φ.

That is, α1, . . . , αk  φ is a formula saying that after per-
forming the actions α1, . . . , αk starting from s0, the agent
believes the universal closure of φ, where the variable s is
restricted to be a successor of root(now), what the agent
thinks is the initial situation. For example,

~α [H(x, do(a, s)) ≡ a = p(x) ∨ H(x, s)]

says that after the actions ~α, the agent believes that for any
situation s which is on the tree rooted at root(now), and for
any object x and action a, the stated relation holds (i.e., x is
held after performing a in s just in case a = p(x) or x was
already held in s).

The following proposition illustrates what sorts of normal
SSAs an agent may believe when a simple SSA is used in
Σssa. We’ll see a more concrete example in the next section.
Proposition 3. Suppose Σ is an IAAT with a simple SSA for
F , and ~α is a sequence of ground actions. If there is an Ab
account ξ such that Σ |= Bel(ξ, do(~α, s0)) and which has in
its range all the abnormalities referred to by F ’s SSA, then

Σ |= ~α F (x, do(a, s)) ≡
[(
γ+(x, a, s) ∧ ¬φ(x, a, s)

)
∨(

¬γ−(x, a, s) ∧ F (x, s)
)]

where φ is a (possibly empty) disjunction, containing the fol-
lowing disjuncts, depending on the original simple SSA:

1. For each εi(x, a, s) of the form Abj(x, s), φ contains ei-
ther no corresponding disjunct, or a disjunct of the form[∨

τ∈T (x = τ)
]

for some finite set T of ground terms.
2. For each εi(x, a, s) of the form [P (x, s)∧Abj(s)], φ con-

tains either no corresponding disjunct, or P (x, s).
3. For each εi(x, a, s) of the form Abj(history(s), x, a, s), φ

contains either no disjunct, or a disjunct of the form

[
∨
〈τ1,τ2,τ3〉∈T (history(s) = τ1 ∧ x = τ2 ∧ a = τ3)]

for some finite set T of triples of ground terms.



Proof. In the normalization of the original SSA by ξ, the ab-
normal atoms in each of the εi(x, a, s) expressions will get
replaced, yielding an SSA as described (for (2), there’s some
additional simplification needed to remove expressions that
include True or False). That that SSA is believed follows
from Proposition 1.

Intuitively, in part (1) of Proposition 3, T is a list of ex-
ceptional objects, the result in (2) depends on whether the
agent has determined P to be an exceptional class, and in
(3), T identifies very specific circumstances for one-time ex-
ceptions. Note that a reason we used the history fluent in our
one-time exception pattern, rather than just referring to a sit-
uation (which also stores a list of actions), is because the
right-hand-sides of SSAs are supposed to be uniform for-
mulas, and so cannot refer to equality of situation terms.

The next proposition says that if we write the SSA for F
as a simple SSA, then (under some conditions) initially the
agent will believe the traditional SSA from Equation 8.
Proposition 4. Let Σ be an IAAT. Suppose that the SSA for
F in Σssa is a simple SSA and that ΣKB (the agent’s initial
knowledge base, from Definition 1) does not refer to any ab-
normality fluent. Then

Σ |=  
[
F (~x, do(a, s)) ≡

γ+(~x, a, s) ∨
(
¬γ−(~x, a, s) ∧ F (~x, a, s)

)]
Proof. Since ΣKB does not refer to abnormalities, it’s easy
to see that there are accessible situations from s0 in which
every abnormality is false. So in s0 the agent believes the
Ab account

∧n
i=1 ∀~x. Abi(~x) ≡ False. The normalization

of any simple SSA w.r.t. that Ab account is (after some sim-
plification) F (~x, do(a, s)) ≡

[
γ+(~x, a, s)∨

(
¬γ−(~x, a, s)∧

F (~x, a, s)
)]

. The result follows from Proposition 1.

While Proposition 3 and Proposition 4 only consider
SSAs dealing with less-plausible failures of positive effects,
analogous results could be shown for SSAs dealing with
other types of less plausible behavior. Note that in some
cases it may be possible to more compactly write the SSA by
distributing the less plausible conditions throughout it rather
than grouping them together as we’ve done.

5 Example of Changing Beliefs about SSAs
We are now ready to formalize the revision sequence (1–4)
described in the example from the introduction. We do so
by constructing an IAAT ΣHolding with the fluents H(x, s),
saying that x is being held in s, and S(x, s), that x is slippery
in s. The actions are p(x), the action to (try to) pick up x,
and sH, which senses whether anything is held. There are
constants c and d (to represent a cup and a dish).

The sensing axioms are

SF(sH, s) ≡ ∃x. H(x, s) SF(p(x)) ≡ True

Note that picking up does not provide sensing information.
All actions are always possible to execute. The SSAs are

S(x, do(a, s)) ≡ S(x, s)

H(x, do(a, s)) ≡ [(a = p(x) ∧ ¬
∨
i εi(a, x, s)) ∨ H(x, s)]

where
∨
i εi(a, x, s)) is

Ab2
1(history(s), x, a, s) ∨ Ab3

2(x, s) ∨ [S(x, s) ∧ Ab4
3(s)]

The disjuncts with lower associated weights (super-
scripts) are the ones that the agent will tend to find more
plausible. So, a one-time exception is more plausible than
an exceptional object, which is more plausible than not be-
ing able to pick up slippery things (i.e., that slippery objects
are an exceptional class). Meanwhile, what’s slippery never
changes. The initial state axioms include

¬H(x, s0) Ab3
2(x, s0)

That is, nothing is initially held, and every object is actu-
ally abnormal—a consequence of this is that no object can
be held in any successor of s0. So in reality, p actions are
ineffectual; they cannot cause anything to become held. The
agent’s initial knowledge base, ΣKB, is empty.

The four points in Proposition 5 below show how during
the action sequence p(c), sH, p(c), sH, p(d), and sH (trying
to pick up the cup twice, then trying to pick up the dish, and
sensing after each attempt) the agent believes the SSAs from
Equations 1–4 from the introduction.

Proposition 5. Let ΣHolding be the IAAT described above.
Then it entails each of the following beliefs about SSAs:

1.  [H(x, do(a, s)) ≡ a = p(x) ∨ H(x, s)]

2. p(c), sH 
H(x, do(a, s)) ≡

[a = p(x)∧¬(history(s) = 〈〉∧x = c)]∨H(x, s)

3. p(c), sH, p(c), sH 
H(x, do(a, s)) ≡ (a = p(x) ∧ x 6= c) ∨ H(x, s)

4. p(c), sH, p(c), sH, p(d), sH 
H(x, do(a, s)) ≡ (a = p(x) ∧ ¬S(x, s)) ∨ H(x, s)

Proof. We sketch the reason for each entailment. By using
Proposition 1, the result can follow from showing which ab-
normalities the agent believes in the relevant situations. We
use the notation 〈α1, . . . , αk〉 for the term representing the
sequence of actions α1, . . . , αk.

1. In the initial situation, it’s consistent with the agent’s
knowledge that all abnormalities are false.

2. After the actions p(c) and sH, the agent knows that exe-
cuting p(c) (from a situation with an empty history) failed
to cause H(c). So Ab2

1(〈〉, c, p(c))∨Ab3
2(c)∨ [S(c)∧Ab4

3]
must be true at all accessible situations. The most plau-
sible of those are where Ab2

1(〈〉, c, p(c)) is true and all
other abnormalities are false (because Ab2

1 has the low-
est weight). (Note that an a = p(c) condition could be
include in the believed SSA but is redundant.)

3. After p(c), sH, p(c), sH, the agent has observed two cases
in which picking up c failed. The most plausible ac-
cessible situations are those where Ab3

2(c) is true and
all other abnormalities are false. Note that situations
where instead there were two one-time exceptions—
where Ab2

1(〈〉, c, p(c)) and Ab2
1(〈p(c), sH〉, c, p(c)) are

true—are less plausible, as the sum of their weights is 4.



4. After these actions, the agent has seen two failures to pick
up c and one to pick up d. The most plausible accessible
situations are those where slippery objects can’t be picked
up (and c and d are slippery), i.e., where Ab4

3∧S(c)∧S(d)
is true, and there are no other abnormalities.

6 Regression
In this section we suggest a way beliefs about SSAs could be
taken advantage of in regression, a syntactic procedure often
used in automated reasoning about situation calculus formu-
las. Reiter (2001) showed that a certain class of formulas,
the regressable formulas, can be rewritten using regression
so as not to refer to any non-initial situations (this can make
them easier to prove, since some axioms from a basic action
theory will no longer be needed). The essential feature of
regression is recursively replacing substitution instances of
the left-hand-sides of SSAs with their right-hand-sides.

In regression as it’s usually considered, the SSAs used
are those the axiomatizer wrote. A novel alternative that
our work suggests is to use other SSAs that the agent hap-
pens to believe at a given time. A computational advantage
might be gained in some cases, because some believed SSAs
may lead to much smaller or larger regression rewritings
than others. To illustrate, an agent could believe both the
SSA P(x, do(a, s)) ≡ (P(f(x), s)∧P(g(x), s)) and the SSA
P(x, do(a, s)) ≡ P(x, s). The first SSA’s right-hand-side
has twice as many atoms as its left-hand-side, so regressing
with it could cause an exponential (in the number of applied
actions) blowup, while that doesn’t happen using the second
SSA. For IAATs, the SSAs given by the axiomatizer will
often refer to various implausible conditions, and in many
situations the agent will believe simpler SSAs.

We will prove (in §6.1) that an agent can use a form of
regression, working with any set of SSAs (and precondi-
tion axioms and sensing axioms) it believes, to reason about
its beliefs. Note that here we apply regression to formu-
las only within belief operators. To regress the whole for-
mula, you would need to additionally apply another form of
regression—we call this full regression and defer discussing
it to §6.2. Also, we leave to future work the important ques-
tion of how to automatically choose a set of believed SSAs
for which regression will be more efficient.

6.1 Regression within Beliefs
Formulas within beliefs typically refer to now. To regress
them, we will require them to be “now-regressable”, which
we define similarly to regressable (Reiter 2001, Def. 4.5.1).
Definition 10 (r-regressable). Given a situation term r (e.g.,
now), a first-order formula φ is r-regressable if
• for each term of sort situation mentioned by φ, the term

has the syntactic form do(~α, r)

• for each atom of the form Poss(α, σ) or SF(α, σ) men-
tioned by φ, α has the syntactic form α′(~t) where α′ is an
action function symbol

• φ does not have quantification over situations
• φ does not mention @ or compare situations for equality
• φ does not mention the B predicate

• φ does not mention any functional fluents (this is just for
simplicity)
The definition of regression is as follows (based closely

on (Reiter 2001, Definition 4.5.3)).
Definition 11. Let ∆ = ∆ssa ∪ ∆pre ∪ ∆sense be a set of
sentences including SSAs, precondition axioms, and sens-
ing axioms for all the fluents and actions. Let φ be a now-
regressable formula, where WLOG we assume that any vari-
ables appearing in φ are distinct from those mentioned by ∆.
Then the regression of φ with respect to ∆ is writtenR∆

1 [φ]
and defined case-by-case as follows:

1. φ is a situation-independent atom, or a relational fluent
atom of the form F (~τ , now). ThenR∆

1 [φ] = φ.
2. φ is a relational fluent atom F (~τ , do(α, σ)), where the

SSA for F in ∆ssa is F (~x, do(a, s)) ≡ φF (~x, a, s). Then
R∆

1 [φ] = R∆
1 [φF (~τ , α, σ)].

3. φ is an atom of the form Poss(α(~τ), σ) or SF(α(~τ), σ). In
the former case, suppose that the precondition axiom for
α in ∆pre is Poss(α(~x), s) ≡ φα(~x, s), and in the latter
case, suppose that the sensing axiom for α in ∆sense is
SF(α(~x), s) ≡ φα(~x, s). ThenR∆

1 [φ] = φα(~τ , s).
4. φ is a non-atomic formula. Regression is defined induc-

tively as follows: R∆
1 [¬φ] = ¬R∆

1 [φ], R∆
1 [φ1 ∧ φ2] =

R∆
1 [φ1] ∧R∆

1 [φ2], andR∆
1 [∃x. φ] = ∃x.R∆

1 [φ].
It can be shown that regressing a now-regressable formula

yields a formula uniform in now. The next proposition says
that an agent can reason using regression using any set of
SSAs that it believes, in the following sense: the agent will
believe that any now-regressable formula is equivalent to its
regression with respect to those SSAs. (Recall from §2 that
∀φ is the universal closure of φ.)
Proposition 6. Let ∆ = ∆ssa ∪∆pre ∪∆sense be any set of
sentences including SSAs, precondition axioms, and sensing
axioms for all the fluents and actions. Suppose that σ∗ is a
ground situation term such that

Σ |= Bel
(∧

∆:now, σ∗
)
,

i.e., the agent in situation σ∗ believes that the axioms in ∆
apply to future situations. Then for any now-regressable for-
mula φ (which WLOG uses distinct variables from ∆),

Σ |= Bel
(
∀(φ ≡ R∆

1 [φ]), σ∗
)
.

Proof. Our proof resembles that of the related (Pirri and Re-
iter 1999, Theorem 2). We assign any now-regressable for-
mula φ a triple of numbers, index(φ) = 〈b, d, c〉, where b
is 1 if an atom of the form Poss(α, σ) or SF(α, σ) appears
in φ (and 0 otherwise), d is the greatest depth of nesting
of do functions in φ, and c is the number of logical connec-
tives/quantifiers in φ. The proof is by induction on index(φ),
with respect to a lexicographic ordering, which we call ≤3.

1. When its index is 〈0, 0, 0〉, φ is either a situation-
independent atom or a relational fluent atom F (~τ , now).
In either case,R∆

1 [φ] = φ, so the result is trivial.
2. When its index is 〈0, d, 0〉 for d > 0, φ is a relational flu-

ent atom F (~τ , do(α, σ)). We want to show that Σ entails
Bel
(
∀(F (~τ , do(α, σ)) ≡ R∆

1 [φF (~τ , α, σ)]), σ∗
)

where



φF is from the RHS of the SSA for F in ∆ssa. First, be-
cause the agent believes that that SSA applies to now and
its successors (and σ is one of those), we get that

Σ |= Bel
(
∀(F (~τ , do(α, σ)) ≡ φF (~τ , α, σ)), σ∗

)
It can be seen that index(φF (~t, α, σ)) ≤3 〈0, d − 1, c〉
for some c, and since 〈0, d − 1, c〉 <3 〈0, d, 0〉, by the
inductive hypothesis we get that Σ entails

Bel
(
∀(φF (~τ , α, σ) ≡ R∆

1 [φF (~τ , α, σ)]), σ∗
)

Since belief is closed under logical consequence we can
put this together with the previous entailment to get the
result we want.

3. When its index is 〈1, d, 0〉, φ is an atom either of the
form Poss(α(~τ), σ) or SF(α(~τ), σ). In either case, the
regression of φ is R∆

1 [φα(~τ)] where φα comes from
the RHS of a precondition or sensing axiom. It can be
seen that index(φα(~t, σ)) ≤3 〈0, d, c〉 for some c, and
〈0, d, c〉 <3 〈1, d, 0〉. Therefore, this case can be shown
similarly to the previous one.

4. When its index is 〈b, d, c〉 with c > 0, φ is a non-atomic
formula. The result can be seen to follow from the induc-
tive hypothesis and belief being deductively closed.

6.2 Fully Regressing Formulas
To fully regress formulas containing beliefs (and not just
regress formulas within beliefs), we adapt the approach by
Schwering and Lakemeyer (2015) from the modal situation
calculus. This will not subsume the previously described
procedure R1, since for full regression we will not in gen-
eral be able to make use of axioms that are merely believed.
Instead, the relation between the two approaches is comple-
mentary; we can (optionally) first use R1 to make formulas
within beliefs uniform in now, and then apply the full regres-
sion procedure, which we’ll call R2, to the entire formula.
(Also,R1 is used as a subprocedure byR2 in a limited way.)

Schwering and Lakemeyer’s approach used conditional
beliefs. Intuitively, a conditional belief in ψ given φ, which
we will write as Con(ψ | φ, s), means that in the most plau-
sible accessible situations from s where φ is true, ψ is also
true. This can be defined as an abbreviation using ≤pl. Be-
lief can be related to conditional belief in the usual way, i.e.,
Bel(φ, s) could equivalently be defined as Con(φ | True,
s). When fully regressing formulas containing beliefs, we
will assume that any expression of the form Bel(φ, σ) has
been replaced with Con(φ | True, σ).

We can use the regression operatorR1 that we previously
defined within conditional beliefs, though we need that the
agent be certain of the axioms ∆ used (as opposed to just
believing them like in Proposition 6), because in the most
plausible accessible situations where the conditional’s an-
tecedent is true, merely believed axioms may not hold.
Lemma 2. Let Σ be an IAAT and ∆ = ∆ssa ∪∆pre ∪∆sense

a set of axioms such that Σ |= Knows (
∧

∆:now, s0) . Then
for any now-regressable formulas ψ1 and ψ2 using distinct
variables from ∆,

Σ |= ∀[Con(ψ2 | ψ1, s0) ≡ Con(R∆
1 [ψ2] | R∆

1 [ψ1] , s0)].

Proof. The key is to note that it would suffice to show that

Σ |= ∀[Knows((ψ1 ≡ R∆
1 [ψ1]) ∧ (ψ2 ≡ R∆

1 [ψ2]), s0)].

This is because that would mean that the most plausible
accessible situations where ψ1 is true are exactly the most
plausible accessible situations where R∆

1 [ψ1] is true, and
whetherψ2 is true at those situations is equivalent to whether
R∆

1 [ψ2] is true at those situations. The proof is similar to
that of Proposition 6 but substitutes Knows for Bel.

In Lemma 2, we considered knowledge only in s0 because
that’s all we’ll need for the role that R1 plays within the
broader procedure R2 that we’re going to define. Next we
need to establish how conditional beliefs in a situation are
related to the previous situation. Schwering and Lakemeyer
(2015, Theorem 5) described this, and we adapt their result.
Lemma 3. For any IAAT Σ and now-regressable formulas
ψ1 and ψ2, Σ |= ∀a, s. Con(ψ2 | ψ1, do(a, s)) ≡ β(a, s),
where β(a, s) abbreviates the following:[
SF(a, s) ∧ Con(ψ2[do(a, now)] |

SF(a, now) ∧ Poss(a, now) ∧ ψ1[do(a, now)], s)
]
∨[

¬SF(a, s) ∧ Con(ψ2[do(a, now)] |
¬SF(a, now) ∧ Poss(a, now) ∧ ψ1[do(a, now)], s)

]
.

Proof. This can be seen to follow using the SSA for B.

A class of formula that can be fully regressed can be de-
fined. The fully regressable formulas have a number of re-
strictions, including (among less notable ones), that any term
of sort situation mentioned by φ (outside beliefs) has the
syntactic form do(~α, s0), and for any expression Con(ψ2 |
ψ1, σ) appearing in φ, ψ1 and ψ2 are now-regressable.

We can now describe the regression procedure, which is
much like that from Schwering and Lakemeyer (2015).
Definition 12. Let Γ = Γssa ∪ Γpre ∪ Γsense be a set of
sentences including SSAs, precondition axioms, and sens-
ing axioms for all the fluents and actions. The (full) regres-
sion of φ with respect to Γ, where φ is fully-regressable (and
uses distinct variables from Γ), is writtenRΓ

2 [φ] and defined
case-by-case as follows:

1. φ is a formula of the form Con(ψ2 | ψ1, do(α, σ)). Let
β(a, s) be as in Lemma 3. Then

RΓ
2 [Con(ψ2 | ψ1, do(α, σ))] = RΓ

2 [β(α, σ)]

2. φ is a formula of the form Con(ψ2 | ψ1, s0). Then

RΓ
2 [Con(ψ2 | ψ1, s0)] = Con(RΓ

1 [ψ2] | RΓ
1 [ψ1] , s0)

whereR1 is the regression operator from Definition 11.
3. If φ is a formula of any other form, it is regressed by R2

analogously toR1 in Definition 11.
Proposition 7. Suppose that Σ is an IAAT. For any fully-
regressable formula φ (not sharing variables with Σdyn),
Σ |= ∀(φ ≡ RΣdyn

2 [φ]).

Proof sketch. This can be proved by induction. The correct-
ness of case (1) can be shown using Lemma 3. For case (2),
the result follows from Lemma 2.



It can be shown that the result of full regression (on a
fully-regressable formula) will be a formula where all the
situation terms outside of conditional beliefs are s0, and all
the ones inside are now. Further details on full regression,
including on how not all axioms from an IAAT are needed
to entail a fully regressed sentence, will be included in the
first author’s PhD dissertation.

7 Discussion and Related Work
The AGM postulates for revision (Alchourrón, Gärdenfors,
and Makinson 1985) are widely used for describing rational
belief change. Our framework, in modelling belief in much
the same way as Shapiro et al. (2011), inherits their results
about the relation to AGM. Briefly, Shapiro et al. defined re-
vision by φ in terms of a “revision action” that sensed that
φ was true, and showed that this satisfied a slightly modi-
fied version of the AGM postulates. Their postulates refer
only to beliefs about formulas that describe the current sit-
uation, so don’t directly describe how beliefs about dynam-
ics should change. However, in our framework, changes in
beliefs about dynamics result from changing beliefs about
abnormalities, so there is still some relevance.

Compared to the original AGM postulates, a difference of
Shapiro et al.’s version was that because revision was de-
fined in terms of sensing, it was not possible to revise by
invalid formulas. Furthermore, if the agent’s beliefs become
inconsistent, they stay inconsistent (because the accessibil-
ity relation can only contract over time), which violates what
is sometimes called the “triviality” postulate (however, un-
der some assumptions the agent’s beliefs will not become in-
consistent). Note that we can still model unreliable sensing
results by, for example, instead of sensing whether P (now)
is true, sensing whether [P (now)∨Abi(history(now), now)]
is true, which allows for the possibility of a “false positive”
result if the relevant abnormality is true.

Existing works on belief revision in the situation calculus
have supported having SSAs describing conditional effects
and the agent revising its beliefs about when those condi-
tions hold. For instance, Schwering, Lakemeyer, and Pag-
nucco (2017, §4.2) gave an example where there is an SSA
saying that dropping fragile objects breaks them, and the
agent revises its beliefs about whether a particular object
is fragile. However, the effect of such revisions on what
SSAs the agent believes was not discussed (and so neither
was regression with SSAs that the agent believes but were
not written by the axiomatizer).

Eiter et al. (2007; 2010) describe how a preference order
can be defined on propositional transition diagrams by valu-
ing a diagram as the weighted sum of the “query” formulas
it entails (Eiter et al. 2007, §4.2). The queries are written
in a propositional temporal-logic-like language. It appears
this approach could describe preferences on how general of
effects action have. However, unlike our work theirs is in a
propositional setting without sensing actions.

Delgrande and Levesque (2013) considered actions which
could fail (and non-deterministic actions more generally).
Their formalization (in the situation calculus) was rather dif-
ferent from ours, as the failure of an action was represented
by the agent “intending” to execute one action but actually

executing another. Fang and Liu (2013) similarly had an
approach, in a multi-agent setting, where agents could be
uncertain about what actions had occurred. These works did
not discuss having the agent generalize from past failures to
reach new conclusions about future action behavior.

A limitation of our approach is that the generalizations
the agent can draw from observations have to be specified
in advance, as opposed to being determined by some gen-
eral inductive principles. In contrast, research in inductive
logic programming (ILP) (Muggleton and de Raedt 1994;
De Raedt 2017) has dealt with the problem of inducing gen-
eral first-order rules given examples. ILP has been applied
to learning event calculus theories (Moyle and Muggleton
1997; Katzouris, Artikis, and Paliouras 2019), and also to
learning action models in the field of relational reinforce-
ment learning (Walker et al. 2007; Rodrigues et al. 2010).
On the other hand, we have focused on providing a way for
the axiomatizer to precisely and explicitly control the plau-
sibility assigned to different possible dynamics.

Working within the event calculus, Mueller (2006, Chap-
ter 12) used abnormality predicates within descriptions of
the environment dynamics, so as to model phenomena like
default effects and default events. That was not combined
with explicitly modelling belief or belief revision, though.

Britz and Varzinczak (2018) distinguish in an example be-
tween two reasons a light might fail to turn on, “either be-
cause the light bulb is blown (the current situation is abnor-
mal) or because an overcharge resulted from switching the
light (the action behaves abnormally).” In our framework,
we would represent both cases as abnormal situations (with
the latter using an abnormality fluent that also takes as argu-
ments the action and history, so as to treat overcharges like
“one-time exceptions”).

8 Conclusion
We have shown how changes of beliefs about SSAs, pre-
condition axioms, and sensing axioms can be modelled us-
ing action theories that assign plausibility to situations by
counting abnormalities. We described several patterns for
writing SSAs that refer to abnormalities, to allow for more
or less general changes of belief in response to unexpected
observations. We have also shown how beliefs about domain
dynamics can be incorporated in regression.

A limitation of our approach is that beliefs about domain
dynamics are only changed in response to observations of
the present state, as opposed to in response to being given
arbitrary facts about dynamics, such as you might read in a
physics textbook or a fantasy story. We’ve also assumed
that the agent always knows what actions have occurred.
However, it would be natural to revise an agent’s beliefs
about what actions have occurred (perhaps the reason it’s not
now holding the cup is that someone else took it, for exam-
ple). Our approach should be compatible with more general
epistemic accessibility relations, such as Shapiro and Pag-
nucco’s (2004), which allowed for exogenous actions that
the agent is unaware of. Finally, while we’ve described our
approach in classical logic, it could easily be adapted to a
version of ES (Lakemeyer and Levesque 2011), a modal
variant of the situation calculus.
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