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Abstract

For a machine to act with common sense, it is not enough that
information about commonsense things be written down in a
formal language. What actual knowledge—i.e. conclusions
available for informing actions—a formalization is meant to
provide cannot be determined without some specification of
what sort of reasoning is expected. The traditional view in
epistemic logic says that agents see all logical consequences
of the information they have, but that would give agents capa-
bilities far beyond common sense or what is physically real-
izable. To work towards addressing this issue, we introduce
a new epistemic logic, based on a three-valued version of
neighborhood semantics, which allows for talking about the
effort used in making inferences. We discuss the advantages
and limitations of this approach and suggest that the ideas
used in it could also find a role in autoepistemic reasoning.

1 Introduction
Commonsense reasoning is easy for people. This easiness is
not an incidental property, but rather what makes such rea-
soning widespread and useful in everyday life. Part of un-
derstanding common sense is knowing what it does not en-
compass, e.g. being able to solve complicated puzzles that
merely happen to mention commonplace objects like piggy
banks or broken eggs. Therefore, elaborate formalizations of
commonsense knowledge that are made without regard for
how reasoning will be done in them may miss the point.

We would like, then, to have a formal system that tells us
which inferences are reasonably easy for an agent to make
and which are hard—an epistemic logic in which we can
say that things are obvious (or a doxastic logic, but we will
not be distinguishing between belief and knowledge). Let us
note that the standard approach in epistemic logic, follow-
ing (Hintikka 1962), does not fit our purpose at all. In the
standard approach, an agent’s uncertainty about the world is
modeled with a set of “possible worlds”, each of which is
associated with a truth assignment that describes one of the
different ways the agent thinks reality might be. The agent
believes whatever is true in all the worlds. If all sentences in
a set Γ are true in every world, then so is any sentence α that
is a logical consequence of Γ. Hence the agent believes all
logical consequences of its beliefs.
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This unrealistic property, termed “logical omniscience”
(or “deductive omniscience”), has inspired considerable dis-
cussion in the literature. That knowledge and belief in (Hin-
tikka 1962) were modeled as being “much too strong” was
pointed out in (Castañeda 1964), an otherwise largely pos-
itive book review. Hocutt (1972) wrote that real people are
“logically obtuse” rather than omniscient. Stalnaker (1991)
wrote that

[A]ny kind of information processing or computation is
unintelligible as an activity of a deductively omniscient
agent. It is hard to see what a logic of knowledge could
be for if it were a harmless simplification for it to ignore
these activities that are so essential to rationality and
cognition.

There have been numerous proposals for epistemic logics
that avoid logical omniscience, and we will not have space
to discuss all of them in this paper. For more information,
the reader is referred to the survey papers (McArthur 1988;
Sim 1997; Moreno 1998; Whitsey 2003).

Hintikka (1962, Section 2.10) suggested an alternative
interpretation (albeit an interpretation he did not favor) of
his modal “knowledge” operator as indicating what follows
from the agent’s knowledge, rather than the knowledge it-
self. This interpretation was taken by Levesque (1984), who
wrote that logical omniscience characterizes “implicit be-
lief”, but that “explicit” (i.e real) beliefs should be described
by a different logic.

The distinction between implicit and explicit belief is use-
ful, and one that we will frequently refer to. However, a sin-
gle type of explicit belief is not really enough. The amount of
effort that an agent is expected to apply to a problem will de-
pend on context. Therefore, we will be following the line of
research developed in (Liu, Lakemeyer, and Levesque 2004;
Liu 2006; Lakemeyer and Levesque 2013; 2014) in which
there is an infinite family of “levels of belief”.

An intuitive understanding of a level of belief is that a
sentence is in a level if it can be concluded with an amount
of effort that is bounded by the number of that level. So,
instead of talking about what agents do believe, the logics
in these papers describe what agents would believe, condi-
tioned on their spending a given amount of effort. An au-
tonomous agent would need to have some mechanism to de-
termine how much effort was appropriate to spend in a given



situation. The logics are not meant to define such a mecha-
nism, but to specify the behavior of a reasoning service that
an agent with such a mechanism could make use of. For an
idea as to how such a service could be used, see (Kowalski
1995), which suggested defining agents to cyclically con-
sume inputs, reason for a bounded amount of time, and take
action. The bound would provide a compromise between op-
erating in a deliberative and reactive manner.

The logic we will be developing in this paper is in-
spired by (the propositional fragment of) the logic ESL from
(Lakemeyer and Levesque 2014). However, the semantics
of ESL are defined in a rather ad hoc and syntactic way,
whereas ours will be based on neighborhood semantics. The
outline of this paper is as follows: In section 2, we provide
background information and introduce notation that will be
needed. Section 3 shows how a simple explicit belief opera-
tor can be defined in a three-valued neighborhood semantics.
Then, in section 4, we also define a system of levels of belief.
In section 5 we compare our logic with ESL and consider
ways in which it would be interesting to extend our work,
and in section 6 we point out some related work.

2 Background
Suppose S and T are sets. We will write S → T to denote
the set of all functions from S to T . The power set of S will
be denoted by P(S). If ≺ is a partial order, then min≺(S)
is the set of minimal elements of S according to ≺.

A propositional logic is defined by three things: a lan-
guage (set of sentences), a set of semantic objects, and a
satisfaction relation between semantic objects and sentences
(which indicates which semantic objects make which sen-
tences true). The language determines the syntax of the
logic, while the semantic objects and satisfaction relation to-
gether determine the semantics.

Let us assume that we have some non-empty set (possibly
infinite) Φ of atomic symbols. The propositional language
L (Φ) is defined by the grammar

α ::= p | (α ∧ α) | ¬α

where p ∈ Φ. As is conventional, ∧ is meant to be under-
stood as a conjunction operator and ¬ as a negation op-
erator. We can define other operators like disjunction, the
material conditional, and equivalence as the usual abbrevia-
tions: (α ∨ β) := ¬(¬α ∧ ¬β), (α ⊃ β) := (¬α ∨ β), and
(α ≡ β) := ((α ⊃ β) ∧ (β ⊃ α))

Lowercase Latin characters p, q, r, . . . will typically be
used to denote atoms in Φ, and Greek letters α, β, γ, . . . to
denote sentences of L (Φ). We may use subscripts on let-
ters. The length of a sentence α, written len(α), is defined
inductively as follows:

len(p) = 1

len(¬α) = 1 + len(α)

len((α ∧ β)) = 3 + len(α) + len(β)

We will be considering two different logics using the lan-
guage L (Φ), the classical two-valued logic and a three-
valued logic (specifically, Kleene’s three-valued logic from
(Kleene 1938)). The two classical truth values are T (“true”)

and F (“false”), and for three-valued logic there is a third
truth value that we will call N (“neither”). Let C := {T,F}
and K := {T,F,N}.

The semantic objects of three-valued logic are functions,
called truth assignments, from the set Φ→ K. We will de-
note the satisfaction relation of three-valued logic by �K. For
v ∈ Φ→ K and α ∈ L (Φ), v �K α iff v′(α) = T, where
v′ ∈ L (Φ)→ K is defined in terms of v as follows:

v′(p) = v(p) for p ∈ Φ

v′(¬α) =


T if v′(α) = F

F if v′(α) = T

N if v′(α) = N

v′(α ∧ β) =


T if v′(α) = T and v′(β) = T

F if v′(α) = F or v′(β) = F

N otherwise
We can identify an element of Φ→ K with the set of liter-
als it makes true (a literal is an atom or the negation of an
atom). This enables us to compare elements of Φ→ K with
the subset relation, to talk of them being finite or infinite,
and to take intersections and (sometimes) unions. Note that
if u ∈ Φ→ K and v ∈ Φ→ K, u ∪ v might not be an el-
ement of Φ→ K, because there might be some p ∈ Φ such
that both p ∈ u ∪ v and ¬p ∈ u ∪ v.
Definition 1 (compatibility). u ∈ Φ→ K and v ∈ Φ→ K
are compatible, written u ♥ v, if u ∪ v ∈ Φ→ K.

Given the three-valued logic we have described, we can
think of classical two-valued logic as a restriction of it,
which differs only in that truth functions cannot map any
atom to N. That is, the semantic objects in classical logic
are elements of Φ→ C (we can view Φ→ C as a subset of
Φ→ K by identifying functions with their graphs), and the
satisfaction relation �C in classical logic coincides with �K
for elements of Φ→ C.

The valid sentences or tautologies of a logic are those
which are satisfied by every semantic object. If α is a sen-
tence in the language of a logic with satisfaction relation �,
then we will write � α to indicate that α is valid in that logic.
Note that there are no valid sentences in Kleene’s three-
valued logic, since ∅ ∈ Φ→ K and ∅ does not make any
sentence true. For a set of sentences Γ, we will write Γ � α
if every semantic object that makes every γ ∈ Γ true also
makes α true. We may write γ � α to mean {γ} � α.

In any logic, the proposition expressed by a sentence is the
set of semantic objects that satisfy that sentence. For classi-
cal and three-valued logics, let us introduce some notation
to denote the propositions expressed by sentences:

JαKC := {v ∈ Φ→ C : v �C α}

JαKK := {v ∈ Φ→ K : v �K α}
We will also find the following definition useful:

TαU := min
⊂

(JαKK)

If there are an infinite number of atoms, JαKK is always ei-
ther infinite or empty, while TαU is always finite and all ele-
ments of it are finite. Note that for any α, β ∈ L (Φ), v �K β
for all v ∈ JαKK if and only if v �K β for all v ∈ TαU.



2.1 Neighborhood semantics
Neighborhood semantics (sometimes called Montague-Scott
semantics) for modal logic were suggested by (Montague
1968) and (Scott 1970). Various forms of these semantics
have been used in AI for modeling belief; a survey can be
found in (Sim 1997, Section IV-B).

In this section we will sketch descriptions of a simple
form of neighborhood semantics with only one agent and
no support for nested beliefs.

The semantic objects are (two-valued) epistemic states,
defined below:

Definition 2. A (two-valued) epistemic state is an element
of P(P(Φ→ C)), i.e. a set of sets of truth assignments
from Φ→ C.

The intuition is that if M is an agent’s epistemic state,
then for each V ∈ M, the agent thinks the world is de-
scribed by one of the truth assignments in V . If the agent
were logically omniscient, it would therefore think that the
real world corresponded to one of the truth assignments in⋂

M. However, the point of the semantics is that agents do
not have to be logically omniscient, i.e. explicit belief can be
modeled.

There are two established ways in which we might go
about defining how the satisfaction relation treats explicit
belief, namely, the strict and loose neighborhood semantics.
Let us introduce two modal operators, [=] and [⊆], one for
each type of explicit belief. The strict neighborhood seman-
tics defines explicit belief by

M � [=]α if there exists V ∈M such that V = JαKC

while the loose neighborhood semantics defines it by

M � [⊆]α if there exists V ∈M such that V ⊆ JαKC

Note that V ⊆ JαKC iff v �C α for every v ∈ V .
The “strict” and “loose” terminology and the [=] and [⊆]

notation are from (Areces and Figueira 2009). Both types of
semantics have long been considered in AI research; (Vardi
1986) used strict neighborhood semantics, and loose neigh-
borhood semantics were used by the “logic of local reason-
ing” from (Fagin and Halpern 1988, Section 6).

The intuitive way to understand the strict neighborhood
semantics is to view an epistemic state as simply a set of ev-
ery proposition that the agent explicitly believes. A problem
with this semantics, noted by (Vardi 1986) and others, is that
if an agent believes a sentence α, then the agent believes any
β equivalent to α (so, for example, if the agent believes any
one tautology, then the agent believes all tautologies).

From the point of view of the loose neighborhood se-
mantics, an epistemic state is not the set of everything be-
lieved, because inferences can be made from each propo-
sition in the epistemic state. Note that if α �C β and
M � [⊆]α, then M � [⊆]β. This is closer to logical om-
niscience (some authors have defined logical omniscience
as being exactly this), but the agent still cannot bring to-
gether information from separate propositions. For example,
{JpKC, JqKC} 6� [⊆](p ∧ q) and {JpKC, J(p ⊃ q)KC} 6� [⊆]q.

3 Three-valued neighborhood semantics
Both the strict and weak neighborhood semantics are in a
sense too strong, as exemplified in the way they treat be-
lief in tautologies. By basing neighborhood semantics on
Kleene’s three-valued logic, which has no tautologies, we
can go some way towards improving matters.

We will relax the definition of an epistemic state to allow
it to involve three-valued truth assignments.

Definition 3 (epistemic state). An epistemic state is an el-
ement of P(P(Φ→ K)), i.e. a set of sets of truth assign-
ments from Φ→ K.

We can view two-valued epistemic states as a special case,
in which none of the functions involved has N in its image.

The point of three-valued epistemic states is not that the
agent thinks that the world is really three-valued. Rather, a
three-valued truth assignment provides a partial description
of the world. Let us make a definition:

Definition 4 (compatibility with an epistemic state). For M
an epistemic state and u ∈ Φ→ K, u is compatible with M
if for each V ∈M there is some v ∈ V such that v ♥ u.

If an agent’s epistemic state is M, then the agent (implic-
itly) thinks that the two-valued truth assignment that corre-
sponds to the real world is compatible with M.

Definition 5 (b). Let U ⊆ Φ→ K and V ⊆ Φ→ K. Then
V b U if for every v ∈ V , there is some u ∈ U such that
u ⊆ v.

Note that if U ⊆ Φ→ C and V ⊆ Φ→ C, then V b U
iff V ⊆ U . Also note that, for any α ∈ L (Φ), V b TαU iff
v �K α for all v ∈ V . Therefore, we can define a new modal
operator [b] which can be thought of as the three-valued
analogue to [⊆] as follows:

M � [b]α if there exists V ∈M such that V b TαU

How does [b] compare with [⊆] as an explicit belief oper-
ator? It is true that if α �K β and M � [b]α, then M � [b]β.
However, this is often a much less onerous requirement for
the agent to fulfill than the classical version of that. Con-
sider that to decide whether {J(p ∨ q)KC} � [⊆]α holds an
agent may have to reflect not just on the truth values of p
and q, but also on the atoms in α (since, for example, α
might be a tautology). On the other hand, to determine if
{T(p ∨ q)U} � [b]α all that has to be done is check whether
both of the two truth assignments in T(p ∨ q)U make α
true. This is easy, especially since each truth assignment in
T(p ∨ q)U is undefined on every atom but one.

We could also create a three-valued version of the strict
neighborhood semantics, but we will not look into that here.
We would like epistemic states to be, instead of enumera-
tions of everything believed (which would often be infinite),
reasonably compact objects which could be physically real-
ized in a relatively straightforward way.

Note that three-valued neighborhood semantics of the sort
we have described are essentially the same as the semantics
based on “belief cells” that (McArthur 1988, Section 4.2)
recounted from an unpublished paper by Levesque.



3.1 On reasonable closure properties
We would like for an agent to have some ability to combine
information from different elements of its epistemic state,
without requiring unrealistic reasoning powers. For exam-
ple, we might like for explicit belief in α and in β to make
(α ∧ β) also explicitly believed. How shall we achieve this?

One obvious approach (followed in e.g. (Vardi 1986, Sec-
tion 4)) is to impose a restriction on the set of semantic ob-
jects. Let us first make a definition:

Definition 6 (e). For U, V ∈ P(Φ→ K), let U e V :=
{u ∪ v : u ∈ U, v ∈ V, and u ♥ v}.

The intuition behind e is that it is the semantic version of
the ∧ operator. Note that TαU e TβU = Tα ∧ βU. Also, if
none of the functions in U or V assign the value N to any
atom, then U e V = U ∩ V .

Now, a restriction on semantic objects could be to require
an epistemic state M to satisfy that if U ∈ M and V ∈ M,
then UeV ∈M. Unfortunately, this sort of approach makes
epistemic states much too strong. To illustrate, suppose that
M is such that {TαiU : 1 ≤ i ≤ n} ⊆M for some sentences
α1, α2, . . . , αn. Then, in order to fulfill the requirement it
must be that T

∧
1≤i≤n αiU ∈M. That means that the agent

explicitly believes all the logical consequences (in Kleene’s
logic) of {αi : 1 ≤ i ≤ n}.

In the next section, we will consider an alternative way to
get closure under conjunction, a way that leaves the semantic
objects alone and instead expands the satisfaction relation by
providing additional conditions under which explicit belief
exists. We will thereby avoid requiring so much power.

However, this does not mean that restricting the set of se-
mantic objects may not sometimes be useful. We below in-
troduce a more reasonable restriction on semantic objects,
that of being harmonized.

Definition 7 (harmonization). Let M be an epistemic state.
The harmonization of M, writtenH(M), is the least superset
of M satisfying the following condition: if V and {u} are
elements, then so is {v ∈ V : v ♥ u}.

An epistemic state M is said to be harmonized if M =
H(M). The motivation behind harmonization is to give
a semantic generalization of the proof-theoretic notion of
unit propagation. Harmonizing an epistemic state does not
confer anything like logical omniscience; for example, if
M = {T(p ∨ q)U,T((p ∨ q) ⊃ r)U} then M is already har-
monized and yet M 6� [b]r.

4 A logic with levels of belief
We are now almost ready to formally define a logic based
on three-valued neighborhood semantics that has a version
of levels of belief. First, though, let us make a definition.

Definition 8 (expansion). Let M be an epistemic state and
α ∈ L (Φ). Then the expansion of M by α, written M[α],
is the epistemic stateH(M ∪ {TαU}).

M[α] could be thought of as the epistemic state that re-
sults from the agent learning or being told α. M[α] might
also be a state temporarily entered when the agent assumes
α for the sake of argument. A major reason for our using

harmonization is so that, if α “obviously” conflicts with the
information in M, M[α] will include the empty set (and so
make every level of belief contain every sentence). This al-
lows for reasoning by contradiction.

Our logic will use the modal language M (Φ), which is
defined by the grammar below, in which α ∈ L (Φ), and k
is any nonnegative integer.

ϕ ::= Bα | Bkα | [b]α | [α]ϕ | (ϕ ∧ ϕ) | ¬ϕ

Note that sentences of L (Φ) cannot appear outside the
scope of a modal operator. Also, [α] is the only sort of modal
operator for which other modal operators can be in its scope.

The semantic objects of our logic are harmonized epis-
temic states.

We will next define a satisfaction relation inductively.
To make the induction well-founded we will have to use a
slightly more complex order on sentences than just length.
In preparation for defining this order, we will inductively de-
fine two functions f, g mapping M (Φ) to integers.

f(Bα) = f([b]α) = −1

f(Bkα) = k

f([α]ϕ) = f(¬ϕ) = f(ϕ)

f((ϕ ∧ ψ)) = max(f(ϕ), f(ψ))

Note that f(ϕ) is the value of the highest subscript in ϕ if
there is one, and −1 otherwise. We next define g:

g(Bα) = g(Bkα) = g([b]α) = 1 + len(α)

g([α]ϕ) = 2 + len(α) + g(ϕ1)

g((ϕ ∧ ψ)) = 3 + g(ϕ) + g(ψ)

g(¬ϕ) = 1 + g(ϕ)

If we consider the Bk and [b] operators to have length 1,
then g(ϕ) is the length of ϕ.

Recall the purpose of f and g is to define a partial order
on sentences. Let us say that ϕ ≺ ψ if 〈f(ϕ), g(ϕ)〉 lexico-
graphically precedes 〈f(ψ), g(ψ)〉, i.e. if f(ϕ) < f(ψ) or if
both f(ϕ) = f(ψ) and g(ϕ) < g(ψ).

Now we can say that the satisfaction relation, �, is defined
by induction on the order ≺ as follows:

1. M � Bα iff, for each w ∈ Φ→ C that is compatible with
M, w �C α

2. M � [b]α iff there exists V ∈M such that V b TαU
3. M � [α]ϕ iff M[α] � ϕ

4. M � (ϕ ∧ ψ) iff M � ϕ and M � ψ

5. M � ¬ϕ iff M 6� ϕ
6. M � Bkα, where k is a nonnegative integer, iff at least

one of the following is true:

(a) k = 0 and M � [b]α

(b) α = (α1 ∧ α2), and M � Bkα1 and M � Bkα2

(c) α = ¬(α1 ∧ α2), and M � Bk¬α1 or M � Bk¬α2

(d) α = ¬¬α1 and M � Bkα1

(e) k > 0 and there exists p ∈ Φ such that both
M � [p]Bk−1α and M � [¬p]Bk−1α



Rule (1) defines B as an implicit belief operator, which
is easily seen to be characterized by logical omniscience.
Suppose Γ �C α. If M � Bγ for every γ ∈ Γ, then each
w ∈ Φ→ C compatible with M makes every element of Γ
true, and so must make α true as well. Hence M � Bα.

The definition of [b] that we have seen before is repeated
by rule (2). Rule (3) defines an operator for expansion by α,
which could be compared to a public announcement of α in
dynamic epistemic logic (van Ditmarsch, van der Hoek, and
Kooi 2007). Rules (4) and (5) make connectives outside the
scope of modal operators behave in their traditional ways.

The various parts of rule (6) define the infinite family of
operators {Bk : k ≥ 0}. An intuitive reading of Bkα is
that “upon being queried about the truth of α, confirmation
takes at most k effort”, though for brevity we suggest the
conventional reading “α is in level k”. Though we still have
the operator [b], we will think of B0 as indicating a form of
explicit belief.

Rule (6a) ensures that level 0 contains every α for which
[b]α is true. Rule (6b) allows for forming conjunctions from
conjuncts that are separately believed, and constitutes our
alternative to the idea (mentioned in the last section) of ac-
complishing that by imposing constraints on the semantic
objects. Note that this alternative means that whether a sen-
tence is in a level depends not just on what proposition it
expresses, but also on its syntactic form. For example, that
((α ∨ ¬β) ∧ β) was in a level would not necessarily mean
that (α ∧ β) was also. The rules (6c) and (6d) allow other
simple ways of syntactically building up beliefs.

Rule (6e) describes how the higher levels of belief are
formed from the lower ones. The idea is that when k ef-
fort is allowed, reasoning by cases (i.e. considering what
would be the case if p were true, and what would be the
case if instead ¬p were true) can be done, nested up to a
depth of k. This is the same way higher levels of belief
are defined in (Lakemeyer and Levesque 2014). The idea
of using the depth of case-splitting allowed as a measure
of effort can also be found in more proof-theory oriented
papers like (Finger 2004; D’Agostino and Floridi 2009;
D’Agostino, Finger, and Gabbay 2013).

4.1 Properties
We will now present various properties of our logic, mostly
without proof. The first shows how implicit belief works:

Proposition 1. Let Γ ⊆ L (Φ) and suppose that M =
H({TγU : γ ∈ Γ}). Then M � Bα if and only if Γ �C α.

Lemma 1. If M � Bkα and M′ is a harmonized epistemic
state such that M ⊆M′, then M′ � Bkα.

Lemma 2 (monotonicity of expansions). Let α, β ∈ L (Φ).
If M � Bkα, then M[β] � Bkα (and so M � [β]Bkα).

Proposition 2 (levels are cumulative). � Bkα ⊃ Bk+1α

Proof. Suppose that M � Bkα. Pick any p ∈ Φ. By Lemma
2, M � [p]Bkα and M � [¬p]Bkα.

Proposition 3 (level soundness). � Bkα ⊃ Bα.

Proposition 4 (eventual completeness). Suppose that M is
finite, and for each V ∈ M, V is finite and each v ∈ V is
finite. If M � Bα, then there is some k such that M � Bkα.

Proof sketch. Suppose that M � Bα. Let n be the number
of atoms that are mentioned in M or α. Letm be the number
of atoms p such that either TpU ∈M or T¬pU ∈M. We will
prove that M � Bn−mα by induction on n−m.

The base case, where n −m = 0, is straightforward. For
the inductive step, suppose that n − m > 0. Let p ∈ Φ be
such that neither TpU ∈M nor T¬pU ∈M. Since M � Bα,
it is also the case that M[p] � Bα and M[¬p] � Bα. There-
fore, by the inductive hypothesis, M[p] � Bn−m−1α and
M[¬p] � Bn−m−1α. Hence M � Bn−mα by rule (6e).

Note that the proof of (Lakemeyer and Levesque 2014,
Theorem 3) is similar.
Proposition 5 (miscellaneous properties of levels).

� Bk(α ∧ β) ≡ (Bkα ∧ Bkβ) (1)
� Bk¬¬α ≡ Bkα (2)
� Bk(α ∨ (β ∨ γ)) ≡ Bk((α ∨ β) ∨ γ) (3)
� Bk((α ∧ β) ∨ (α ∧ γ)) ⊃ Bk(α ∧ (β ∨ γ)) (4)
� Bk(α ∨ (β ∧ γ)) ⊃ Bk((α ∨ β) ∧ (α ∨ γ)) (5)

The converses of (4) and (5) are not valid in general.

4.2 A reasoning service
Our logic can be used to specify a reasoning service in
the following way: after being told the sequence of sen-
tences α1, α2, . . . , αn (and nothing else), the service will,
given an input sentence β and integer k, return “Yes” if
∅[α1][α2] · · · [αn] � Bkβ, and “No” otherwise. Equivalently
(because of Lemma 1), we could phrase the question as de-
termining whether � [α1][α2] · · · [αn]Bkβ.

The following complexity result can be shown:
Proposition 6. For α1, . . . , αn in disjunctive normal form
(DNF), any sentence β, and k a fixed constant, whether
� [α1][α2] · · · [αn]Bkβ can be computed in polynomial time.

A sentence is in DNF if it is a disjunction of conjunc-
tions of literals. The requirement that α1, . . . , αn be in DNF
may seem like a serious constraint, since (as is well-known)
converting a sentence into DNF may take exponential time.
However, for knowledge representation purposes, we may
often be dealing with large collections of facts which are in-
dividually simple—i.e. the number n of sentences may grow
to be very large, but each sentence typically remains small.
In such a case it could be practical to convert each of the
sentences into DNF.

5 Discussion
5.1 Comparison with ESL
Our logic is to some extent patterned after the propositional
fragment of the logic ESL from (Lakemeyer and Levesque
2014). So, how does it compare?

The analogues in ESL of our epistemic states are called
“setups” and they are sets of clauses (a clause is a disjunc-
tion of literals). Setups are a much less expressive class of



objects than epistemic states. To make an epistemic state M
restricted in an analogous way, we would have to require that
every V ∈ M be finite (we typically would want that any-
way) and, more seriously, that for each v ∈ V , exactly one
atom is mapped to a non-N value by v. As a consequence, in
ESL the following sentence is valid:

B0((p ∧ q) ∨ (r ∧ s)) ⊃ (B0(p ∧ q) ∨ B0(r ∧ s))
That seems undesirable. Of course, that sentence is not valid
in our logic. The idea that at heart an agent’s knowledge con-
sists of a set of disjunctions of literals seems to be without
philosophical or psychological motivation.

Furthermore, the satisfaction relation in ESL is defined
in a more syntactic way, resulting in many sentences not be-
ing in a level even when intuitively they seem to follow—
without the need to reason by cases—from other sentences
in the level. For example, B0(p ∨ q) ⊃ B0(p ∨ ¬¬q) (a va-
lidity in our logic) is not valid in ESL.

5.2 Limitations and possible extensions
Parikh (1987) defined a knowledge algorithm as consisting
of a database and a procedure that, given an input question
and a resource bound, works up to the bound, and then ei-
ther answers the question or says “I don’t know”. Also, in
a feature that might be interesting to extend our logic with,
the database may be updated as a result of the query. This
could be used to model Socratic questioning, where a series
of well-chosen questions make the agent realize what it (im-
plicitly) knew all along (see (Crawford and Kuipers 1989)
for an existing approach to formalizing this).

Parikh also suggested that, in some cases, the agent may
know that an implicit belief does not exist. McCarthy (1977)
gave the example of being sure that you will not be able
to, by reasoning alone, determine whether the president is
currently standing. Our levels of belief can be thought of as
approximations of implicit belief from below; it would be
interesting to have approximations from above, that would
identify sentences that were obviously neither believed nor
disbelieved. See (Schaerf and Cadoli 1995) and (Finger and
Wassermann 2007) for existing approaches at this.

One of the advantages some authors have found with
neighborhood semantics is that agents can have conflict-
ing beliefs without believing everything. Unfortunately, our
eventual completeness result means that in our logic agents
can ultimately derive anything from contradictory beliefs.

Our logic also does not feature any introspection, but we
expect that an extension incorporating that would be inter-
esting. In particular, incorporating a notion of effort into
autoepistemic reasoning would be useful. Recall (Moore
1985)’s well-known example of autoepistemic reasoning:

[I]f I did have an older brother I would know about it;
therefore, since I don’t know of any older brothers, I
must not have any.

If we formalize “know” in the brother example as implicit
knowledge, then determining whether “I don’t know of any
older brothers” may be very difficult. A better formalization
might capture the following idea, which is probably what
we normally really mean if we say that we would know if
we had an older brother:

If I had an older brother, it would be obvious to me that
I did.

Some notion of effort would clearly be relevant to this.
Moore’s brother problem was formalized in (Elgot-Drapkin
and Perlis 1990, Section 6.2) by equating knowing α with
having already drawn the conclusion thatα. This may suffice
for the brother problem in particular, but is not very flexible.

For a more complicated example of agents reasoning
about their own knowledge, consider the following problem:

A classroom is full of students, about to write an exam.
The instructor announces (truthfully) that the exam
only requires material from up to chapter five in the
textbook, and that she expects the exam to be easy.
Formalize how the instructor’s announcement might
help the students.

Unlike the contrived puzzles often considered in epistemic
logic (e.g. the “muddy children” problem discussed at length
in (Fagin et al. 1995)), this problem actually describes some-
thing that could plausibly occur in everyday life. Further-
more, the machinery provided by standard epistemic logics
(including dynamic epistemic logic) is not of much help in
capturing the important aspects of this problem.

6 Related work
Duc (2001, Chapter 5) also presents a logic with numbered
knowledge operators, where the numbers are meant to in-
dicate bounds on how much time it would take to verify
that the sentences in question are true. However, most of the
work in defining what those bounds would be for particular
sentences is not done by the logic, but by cost functions that
a user of the logic would have to provide.

Two-valued strict neighborhood semantics are the basis
for the “active logic” described in (Nirkhe, Kraus, and Perlis
1995, Section 4). In this logic, time is represented, and epis-
temic states expand over time, which is meant to model an
agent reasoning. However, as was criticized by (Jago 2006,
Section 4.4.2), all tautologies are believed from time 0 on.

Some other papers that we have not yet mentioned which
involve something like a notion of effort are (Crawford and
Kuipers 1991; Dalal 1996; Crawford and Etherington 1998).

7 Conclusion
Following (McCarthy and Hayes 1969)’s epistemological-
heuristic division, some researchers have approached the
problem of formalizing common sense without regard for
the complexity of reasoning. In contrast, we have described
a logic in which the effort involved in reasoning can, to some
extent, be described. Further evaluation will be needed to
compare against actual human performance. What is more
important than our particular formalism, though, is the idea
that what it is formalizing is something that needs to be for-
malized and is relevant to research into common sense.
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